A conserved Mcm4 motif is required for Mcm2-7 double-hexamer formation and origin DNA unwinding

In this project, Kankowan Champasa from Stephen Bell’s lab at MIT collaborated with other researchers from the Bell and Gelles labs to study a key process that sets the stage for replication of chromosomal DNA. They explain “licensing of eukaryotic origins of replication requires DNA loading of two copies of the Mcm2-7 replicative helicase to form a head-to-head double-hexamer, ensuring activated helicases depart the origin bidirectionally.”  The researchers identified a conserved motif in the Mcm4 helicase subunit essential for formation of productive replication complexes.  Single-molecule fluorescence energy transfer experiments show that mutations in the motif still allow the two hexamers to come into contact, but they prevent the formation of the stable double-hexamers that perform the extensive DNA unwinding needed for replication.

10.7554/eLife.45538
A conserved Mcm4 motif is required for Mcm2-7 double-hexamer formation and origin DNA unwinding.
Champasa, K., Blank, C., Friedman, L.J., Gelles, J., and Bell, S.P.
eLife (2019) 8:e40576