
Zero-range process with random interaction

Luis Carlos Garcia del Molino1

1Complexity DTC, Mathematics Department, University of Warwick, Coventry CV4 7AL, UK

(Dated: July 14, 2011)

The zero-range process is a stochastic interacting particle system that under certain conditions
exhibits a phase separation. The homogeneous model (i.e. when the interaction is homogeneous) is
well understood and there are analytical expressions for most thermodynamical variables. However,
if we introduce a small perturbation in the interaction the problem becomes much more complex
and an analytical approach is harder. In this work we first provide numerical results that allow us
to understand in an intuitive manner the behaviour of the system. Later we prove analytically the
existence of expected values of the free energy and critical density. We also provide an expansion
that allows us to predict the system’s behaviour when the perturbation is small.

PACS numbers:

I. INTRODUCTION

The zero-range process is a stochastic lattice gas where the particles hop randomly with an on-site interaction
that makes the jump rate dependent only on the local particle number. It was introduced in [1] as a mathematical
model for interacting diffusing particles, and since then has been applied in a large variety of contexts, often
under different names, (see e.g. [2] and references therein). The model is simple enough for the steady state
to factorize, on the other hand it exhibits an interesting condensation transition under certain conditions. Viz.
when the particle density exceeds a critical value ρc the system phase separates into a homogeneous background
with density ρc (i.e. the fluid phase) and all the excess mass concentrates on a single lattice site, thus representing
a classical real-space analogue of Bose-Einstein condensation. This has been observed and studied in some detail
in experiments on shaken granular media [3, 4]. It is also relevant as a generic mechanism for phase separation
in single-file diffusion [5] and condensation phenomena in many complex systems such as network rewiring [6]
or traffic flow [7], for a review see [2].
In the homogeneous system, if the jump rates g(n) have a decreasing tail for increasing number n of particles,

the transition can be caused by the growth of large clusters at the expense of small clusters. Such a model with
a generic power law decay

g(n) = 1 + b/nγ (1)

with positive interaction parameters b, γ has been introduced in [9]. Condensation occurs if 0 < γ < 1 and b > 0
or if γ = 1 and b > 2.
The condensation transition is hence well understood on a mathematically rigorous level in the context of

the equivalence of ensembles [10, 11], and many variants of (1) have been studied [2, 12–16]. However the
assumption of strict spatial homogeneity is not desirable for applications to real complex systems in which there
may be some disorder due to local imperfections.
It has been shown recently that a small perturbation of the jump rates has a drastic effect on the critical

behaviour. It is now clear that the condensation occurs if 0 < γ < 1
2 and b > 0[23] but little is known about the

distributions of the thermodynamical variables of the system. In the present work we try to shed some light
upon that last point.
The paper is organized as follows: first we define the zero-range process with random interaction and the

quantities needed to characterize it. In section III we cover some numerical issues about the computational
results and their validity. In section IV we present and confirm, by numerical means, some previous analytical
results by Stefan Grosskinsky regarding the existence of the expected values of both the critical free energy and
critical density. In section V we provide an expansion to compute the value of thermodynamical variables and
their distributions for small noise supported with numerical results.
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II. DEFINITIONS

The ZRP with disordered interaction

We consider a lattice ΛL, which we take to be periodic and of finite size |ΛL| = L. A configuration is denoted
by (ηx)x∈Λ where ηx ∈ {0, 1, . . .} is the occupation number at site x. The dynamics is defined in continuous
time, such that with rate gx(ηx) site x ∈ ΛL loses a particle, which moves to a randomly chosen target site
y according to some probability distribution p(y − x). For example in one dimension with nearest neighbour
hopping, the particle moves to the right with probability p and to the left with 1−p. The jump rate gx depends
only on the configuration of the starting site and we take it to be

gx(n) = eσξx(n)+b/nγ

for n ≥ 1 , g(0) = 0 (2)

where σ, b and γ are positive constants and ξx(n), x ∈ Λ, n ∈ N are iidrv’s with

Eξx(n) = 0 , Eξx(n)
2 = 1 , and δ := logEe−σξx(n) < ∞ . (3)

By Jensen’s inequality and strict convexity of the logarithm we have δ > 0. Note that for σ = 0, the asymptotic
behaviour of the jump rates is given by (1), so the present model can be interpreted as a perturbation of the
generic homogeneous model. The same model has been introduced in [23].
For negative γ the rates are increasing in n for positive b and hence there is no condensation. For negative b

the rates tend to zero, which means that there is condensation with critical density ρc = 0. This is an essentially
trivial feature of the model which is robust against perturbation by disorder. We therefore focus on positive
interaction exponent γ and b > 0.

Thermodynamical variables

It is well known (see e.g. [2, 17]) that the fluid phase has a grand-canonical factorized steady state νLµ =
∏

x∈ΛL
νxµ with single-site marginal

νxµ(n) =
enµ

zx(µ)
wx(n) (4)

where the chemical potential µ ∈ R fixes the particle density and the stationary weights are given by the jump
rates via

wx(n) =

n∏

k=1

gx(k)
−1 = exp

(

− σSx(n)− β(n)
)

. (5)

Here Sx(n) =
∑n

k=1 ξx(n) can be interpreted as the position of a random walk on R after n steps with indepen-
dent increments. This holds independently of the distribution of target sites p(y − x) and for each realization
of the ξx(k), i.e. ν

L
µ is a quenched distribution. The other term in the exponent is β(n) =

∑n
k=1 b/k

γ and acts
as a drift. When the parameters are in the ranges for which there is condensation the drift eventually sends the
exponent to −∞. Finally, σ determines the size of the perturbation. Just to provide some intuition we could
say that the perturbation is big if σ ≫ b and small if σ ≪ b.
The single-site normalization is given by the partition function

zx(µ) =

∞∑

n=0

exp
(

nµ− σSx(n)− β(n)
)

(6)

which is strictly increasing and convex in µ [10]. Note that the exponent is a random walk with a time dependent
drift nµ − β(n). For the existence of zx(µ) it is necessary that the drift dominates over the stochastic part
σSx(n).



3

We denote

fx(µ) = log zx(µ) . (7)

However, global averaged quantities are more relevant for the characterization of the system. The way in which
the average is done is of major importance since it leads to two quantities with different meanings, the annealed
an quenched free energies. The annealed free energy is

fA(µ) = logEzx(µ) = log

∞∑

n=0

exp
(
nµ+ nδ − β(n)

)
, (8)

where E[·] means expected value with respect to all possible realizations of the noise σSx(n). fA can be
interpreted as the free energy of a site with an average perturbation and it can be rewritten as a translation of
the homogeneous free energy

fA(µ) = f(µ+ δ) , (9)

where f(µ) and z(µ) (and in general all quantities with no subscript) refer to the homogeneous system’s variables,
i.e. with σ = 0. Given that z(µ) is monotone increasing in µ, f(µ) also is and hence fA(µ) > f(µ) for all µ.
On the other hand, we have the quenched free energy

fQ(µ) = E log zx(µ) , (10)

which is the average of fx and is the physically relevant quantity as it is the systems’ free energy in the
thermodynamical sense. By Jensen’s inequality we always have fA(µ) ≥ fQ(µ) ≥ f(µ) so fA and f are upper
and lower bounds for fQ.
The local density can be calculated as usual as a derivative of the free energy

ρx(µ) =
∂fx(µ)

∂µ
(11)

and it is also a strictly increasing function of µ.
As it is shown later, the grand-canonical partition function zx(µ) does not exist for µ > 0. Evaluating the

quantities defined above in µ = 0 one obtains the critical values. In particular, the average critical density is

ρc = E [ρx(0)] (12)

which is finite almost surely (a.s.) (see proposition 1).

III. NUMERICS

The main issue generating numerical results for this model is to compute infinite sums. The convergence of
zx(µ) (and hence of fx(µ)) is granted by the analytical results shown in section IV, however in the critical point
the effect of the noise is maximal and the convergence is very slow. Because of this reason, it is useful to define
and analyze truncated quantities

zNx (µ) =

N∑

n=0

exp
(

nµ+ σSx(n)− β(n)
)

, (13)

fN
x (µ) = log zNx (µ) (14)

and so on. By definition

lim
N→∞

fN
x (µ) = fx(µ) , (15)

and we expect fN+1
x (µ) − fN

x (µ) to decrease, at least in average, for increasing N . We want to find a N̄ such
that fx(µ)− f N̄

x (µ) is irrelevant compared to the numerical precision. As fN
x (µ) are random variables, different
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realizations of Sx(n) will make the sum converge at different rates. To have a good estimate for N̄ we have to
average over several samples

lim
N→∞

〈fN+1
x (µ)〉L − 〈fN

x (µ)〉L = 0 (16)

where 〈 · 〉L is the quenched average over L realizations of Sx and 〈fN
x (µ)〉L is a strictly increasing function

of N . As fN
x (µ) is a selfaveraging quantity, we can use 〈 · 〉L as an estimator for E[·]. For the quenched free

energy we have

lim
N→∞
L→∞

〈fN
x (µ)〉L = fQ(µ) . (17)

Note that fQ is finite (see Theorem 3) and both fN
x and E[fN

x ] are monotone increasing in N therefore the
limits for N and L commute.
The optimal truncation point N̄ has to be chosen such that 〈fN

x 〉L is, up to numerical precision, equal to
〈f N̄

x 〉L for all N > N̄ . To find N̄ we sample 〈fN
x (µ)〉L for increasing values of N until the previous condition is

satisfied as shown in figure 1. A similar process is done for L (see figure 2).
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FIG. 1: Convergence of 〈fN
x (0)〉L for increasing N with γ = 0.4 (solid line) and γ = 0.6 (dashed line). As we

could expect, 〈fN
x (0)〉L diverges for γ > 1/2. Instead, for γ < 1/2 it increases monotonically up to an upper

bound which is the numerical result for fQ(0). Note that for γ < 1/2 the smaller σ is, the faster the convergence
is. On the other hand, for γ > 1/2 the smaller σ is, the slower the divergence is. Here b = 1 and L = 104.

As the convergence is slower the larger µ is and here we have used the critical value µ = 0, we expect all sums
with µ ≤ 0, σ ≤ 1, γ = 0.4 and b = 1 to converge for N = 105 and L = 104. Those are the parameters used
in all simulations except where the contrary is explicitly stated. On the other hand, the convergence becomes
slower as σ increases. A lower estimate for N̄ with µ = 0 is the point where the drift β(n) becomes greater than
the random walk Sx(n) and thus successive terms of the sum start decreasing. For big n we can approximate
β(n) ≈ b

1−γn
1−γ and a random walk goes as |σSx(n)| ∼ σ

√
n. This gives us an exponential relation

N̄ & σ
2

1−2γ (18)

that grows very fast for increasing σ. Hence obtaining numerical results for big perturbations is computationally
expensive. Here we will focus on σ ≤ 1 which is already big enough for our study.
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FIG. 2: Convergence of (a) 〈fN
x (0)〉L and (b) 〈ρNx (0)〉L for increasing L. The error bars represent the standard

error of the mean. For small L very few rare and large values of fx and ρx dominate the average but when the
sampling is big enough these large contributions are compensated. Here γ = 0.4, b = 1 and N = 105.

IV. EXISTENCE OF EXPECTED VALUES

We now provide some analytical results regarding the existence of the thermodynamical variables defined in
section II. The proofs can be found in the appendix A.

Proposition 1 zx(µ) and ρx(µ) are a.s. smooth functions of µ for µ < 0. For γ ∈ [1/2, 1) we have

zx(µ) < ∞ a.s. iff µ < 0 and zx(µ) → ∞ a.s. as µ ր 0 . (19)

For γ ∈ (0, 1/2) we have

zx(µ) < ∞ a.s. iff µ ≤ 0 and zx(µ) → zx(0) < ∞ a.s. as µ ր 0 . (20)

The same statements, respectively, hold for ρx(µ) and all higher moments, in particular, for the site dependent

critical density

ρx(0) < ∞ a.s. iff γ ∈ (0, 1/2) . (21)

The fact that the partition function does not exist for µ > 0 means that the chemical potential can not be
increased indefinitely. The chemical potential regulates the density thus the maximum density will be ρx(µ = 0).
We have different behaviours for γ ∈ [1/2, 1) and γ ∈ (0, 1/2).
When γ ∈ [1/2, 1) as µ approaches 0 the density diverges and for any real positive value of ρ we can find the

corresponding chemical potential. This means that we can increase the the density of the fluid phase as much
as we want and the whole system will be in the fluid phase so there is not phase separation.
On the other hand, for γ ∈ (0, 1/2), the fluid phase density is bounded. If we increase the system’s density

above the critical value the excess mass can’t belong to the fluid phase and there must be a different phase
containing it.

Proposition 2 Let γ ∈ (0, 1/2). For the annealed free energy we have

fA(µ) < ∞ ⇔ µ ≤ −δ . (22)

For γ ∈ [1/2, 1] the same holds with µ < −δ.
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Proof Ezx(µ) =
∑∞

n Ewx(n) =
∑∞

n E(eξx(1))ne−β(n)+µn
2

Theorem 3 Let γ ∈ (0, 1/2). For the quenched free energy we have

fQ(µ) < ∞ ⇔ µ ≤ 0 and ρc < ∞ . (23)

The last result implies that there exists a normalizable probability density function for fx. Knowing that
distribution would be extremely useful since most of the systems’ features and properties could be derived
from it. However, it is very hard to find analytical formulas even for its moments. In the next section we will
provide some approximations that predict the probability density function of fx and its expected value for small
perturbations.
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FIG. 3: Numerical results for the probability density function of fx with Gaussian ξx(n) and different σ. Here
µ = 0, b = 1, γ = 0.4 and N = 105. For each value of σ 104 samples were taken.
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FIG. 4: Quenched, annealed and unperturbed free energies for γ = 0.4 and γ = 0.6. We can see that always
fA ≥ fQ ≥ f . Also we can see that for γ = 0.6 fQ diverges as µ → 0. For σ = 0.2 the divergence occurs so
close to the origin that it is imperceptible in the plot. Each point of fQ is the average of 104 samples of fx.
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V. EXPANSION FOR SMALL NOISE

The effects of noise on the thermodynamical variables are difficult to predict, however expanding the partition
function for σ → 0 one can find approximations that prove to be accurate in a range of values of σ depending
on the other parameters. For γ < 0.5, µ ≤ µc and for all σ, as defined in (6), we have

zx(µ, σ) =
∞∑

n=0

enµ−σSx(n)−β(n) < ∞ a.s. (24)

where we now stress the dependence on sigma. The above is continuously differentiable in σ. Recalling that
z(µ) =

∑∞

n=0 e
nµ−β(n), we can define a probability measure p(n) where the random variable X takes the value

Sx(n) with probability p(n) = enµ−bn

z(µ) and Ep[·] is the expected value with respect to the probabilities p(n).

Therefore

∂mzx(µ, σ)

∂σm

∣
∣
∣
σ=0

= z(µ)

∞∑

n=0

Sx(n)
mp(n) = z(µ)Ep[X

m] . (25)

Now for a fixed realization of the noise σSx(n) expanding around σ = 0 we have

zx(µ, σ) = z(µ)
∞∑

n=0

σn

n!
Ep[X

n]. (26)

According to proposition 1 all moments of zx(µ) are finite so Ep[X
n] < ∞ a.s. for all n and hence zx(µ) and

fx(µ) are analytic functions. That guarantees the convergence of the expansion.

Free energy distribution

Using the expansion above, the logarithm of zx is

log
(
zx(µ, σ)

)
= log

(
z(µ)

)
+ log

(

1 +

∞∑

n=1

σn

n!
Ep[X

n]
)

(27)

and expanding the second logarithm in the right hand side up to second order in σ we obtain

fx(µ, σ) = f(µ) + σEp[X ] +
σ2

2

(
Ep[X

2]− Ep[X ]2
)
+ o(σ2) . (28)

As fx is analytic, we can assure that as σ → 0 terms o(σ2) will go to 0 faster than the rest of the expansion.
The probability density function of fx for σ → 0 is given by the first order term

Ep[X ] =

∞∑

n=0

Sx(n)p(n) = 0 + ξx(1)

∞∑

n=1

p(n)

+ξx(2)
∞∑

n=2

p(n) + . . . =
∞∑

k=1

ξx(k)F̄µ(k) , (29)

where F̄µ(k) =
∑

n≥k p(n) is the tail of the distribution p(n). The interpretation of this result is that for small
σ the deviation of fx(µ, σ) from the unperturbed systems’ free energy f(µ) scales with σ. In general, as σ → 0,

fx(µ, σ)− f(µ)

σ
→

∞∑

k=1

ξx(k)F̄µ(k) , (30)
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In the particular case that ξx(n) are Gaussian this is a linear combination of independent Gaussians, and
therefore,

fx(µ, σ)− f(µ)

σ
√

s(µ)
→ N(0, 1) with s(µ) =

∑

k≥1

F̄µ(k)
2 < ∞ , (31)

and the fluctuations are Gaussian.
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FIG. 5: Rescaled probability density functions for uniform and Gaussian ξx(n). In (a) the solid line corresponds
to the normalized histogram of the distribution given in (30), in (b) it is a Gaussian pdf. The data for larger σ
is skewed towards positive values and that is the behaviour we expect for large perturbations. Here µ = 0 and
the effect of the perturbation is more relevant than for µ < 0 so we expect a better collapse for smaller µ. Here
106 samples were taken for each value of σ.

Expected values

Using the same expansion one can estimate fQ = E[fx] and ρ(µ, σ) = E[ρx(µ)]. First, we have that E[Sx(n)] =
0 and also E[Sx(n1)Sx(n2)Sx(n3)] = 0 and so on for all odd powers. Therefore we only have even powers and
the expansion of the quenched free energy is

fQ = E[log zx(µ, σ)] = f +
σ2

2

(
E
[
Ep[X

2]
]
− E

[
Ep[X ]2

] )
+ o(σ3) . (32)

The main difficulty now is to compute the expected values of even powers of the random walks Sx(n). After
some calculations (see appendix B) we can rewrite the quenched free energy and the density as

fQ(µ) = f(µ) + σ2φ(µ) + o(σ3) (33)

E[ρx(µ, σ)] = ρ(µ) + σ2φ′(µ) + o(σ3) (34)

where

φ(µ) =
1

2

∞∑

n=0

F̄µ(n)(1 − F̄µ(n)) (35)

φ′(µ) =
∂φ(µ)

∂µ
=

1

2

∞∑

n=0

∂F̄µ(k)

∂µ
(1− 2F̄µ(k)) (36)
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are coefficients that can be easily computed and are totally deterministic. Note that unlike the expressions for
the probability density functions of fx(µ), these results do not depend on the distribution of ξx(n).
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FIG. 6: Data collapse of the expansions of fQ(0) and ρc(0). The expansion up to second order is very accurate
for σ < 0.5. For σ > 1 higher order terms become relevant. Here N = 105, L = 105.

A fourth order term can be computed. For the coefficient of the σ4 term the cumulant expansion gives:

1

24
E

[(

− 6Ep[X ]4 + 12Ep[X ]2Ep[X
2]− 3Ep[X

2]2 − 4Ep[X ]Ep[X
3] + Ep[X

4]
)]

(37)

and we now have to compute terms of the form E[Sx(n1)Sx(n)Sx(n3)Sx(n4)]. Using nested conditional distri-
butions we obtain

E[Sx(n1)Sx(n2)Sx(n3)Sx(n4)] = 3n2
1 + n1(n2 − n1) + n1(n3 − n2) = 2n2

1 + n1n3 . (38)

It is difficult to find a closed analytical formula for the coefficient, but it can be computed numerically. However,
a fourth order expansion does not predict the curves obtained numerically. This can be expected since the slopes
of the curves in figure 6 are different for σ & 1 so there are different contributions of several terms o(σ2).

VI. DISCUSSION

In this work we have deepened the knowledge of the zero-range process with disordered interaction. We
have studied the model within the frame of the grand canonical ensemble because its partition function its well
defined and provides a very good starting point. The main goal of this project was to generate good numerical
results and simple analytical expressions for the main system’s thermodynamical variables.
We first focused on producing reliable numerical results. This implies a deep analysis of the partition function

an its numerical properties. We can now be confident about the values obtained numerically in a large range of
the system’s parameters.
We have also presented some results by Stefan Grosskinsky concerning the system’s partition function,

quenched and annealed free energies and densities (site dependent and critical density) and we have checked
that the numerical values confirm the analytical predictions.
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Finally we provide some expressions for approximations derived from a Taylor expansion of the partition
function. We can predict very accurately the probability density function of fx for σ < 0.1 and we have
expressions for fQ and ρc that predict the actual values with great precision for σ < 0.5.
It would be very interesting to shed some light upon the behaviour for large perturbations since it would give

a broad understanding of the model, however it is still a difficult problem to tackle. It would also be interesting
to analyze how the distribution of ξx(n) affects the model. Finally, how the variables diverge for γ ∈ [1/2, 1) is
a question of major interest since in finite systems metastable condensations can occur in that range.
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APPENDICES

A. Proofs of Proposition 1 and Theorem 3 from section IV.

Proof of Proposition 1 The law of the iterated logarithm holds.

lim sup
n→∞

|σSx(n)|√
n log logn

= σ
√
2 a.s. (39)

see e.g. [18]. Further, we write

β(n) =

n∑

k=1

b

kγ
≃ b

1− γ
n1−γ as n → ∞ . (40)

We thus have β(n) ≫ σSx(n) a.s. as n → ∞ if and only if γ ∈ (0, 1/2), which implies

σSx(n)− cβ(n) → −∞ a.s. and nqeσSx(n)−cβ(n) → 0 a.s. (41)

for all c > 0, q > 0. This implies in particular that wx(n) → 0 a.s. as n → ∞ and with zx(0) =
∑

wx(n) we get

P(∃finitely many n : wx(n) > e−β(n)) = 1 ⇒ zx(0) < ∞ a.s. . (42)

The same holds for higher moments

P(∃finitely many n : nwx(n) > e−β(n)) = 1 ⇒ ρx(0) < ∞ a.s. . (43)

If γ ∈ [1/2, 1) this only works for µ < 0. 2

Proof of Theorem 3 Write zNx (0) =
∑N

n=0 wx(n). Then z0x(0) = 1 and zNx (0) > 1 a.s.. Let ∆N :=
E[fN

x (0)− fN−1
x (0)]. Then

∆N+1 = E[fN+1
x (0)− fN

x (0)] = E log(zN+1
x (0)/zNx (0)) =

= E log
(

1 +
wx(N + 1)

zNx (0)

)

≤ E
wx(N + 1)

zNx (0)
(44)

since log(1+x) ≤ x for x > 0. With wx(N+1) = wx(N)e−σξx(N+1)−b/(N+1)γ and by independence of ξx(N+1)
we get

E
wx(N + 1)

zNx (0)
= eδ−b/(N+1)γ

E
wx(N)

zNx (0)
. (45)

Now, wx(N) ≤ zNx (0) a.s. and we can estimate

E
wx(N)

zNx (0)
≤ 1P

(wx(N)

zNx (0)
> 1/N2

)

+ 1/N2 . (46)

Since zNx (0) ≥ 1 a.s. we have

P

(wx(N)

zNx (0)
> 1/N2

)

≤ P(wx(N) > 1/N2) = P

(

σSx(N) >
b

1− γ
N1−γ − 2 logN

)

, (47)

whish is bounded above by exp
[

−n1−2γ
(

b
1−γ

)2( 1
2σ

)]

, see [24]. Thus
∑∞

k=1 ∆k < ∞ and thus

fQ(0) = lim
N→∞

EfN
x (0) = lim

N→∞

N∑

k=1

∆k < ∞ . (48)
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The second statement, ρc < ∞, can be shown very similarly. Now define

ρNx (0) :=
( N∑

n=0

nwx(n)/zx(0)
)

< ∞ (49)

for all N > 0, since 1/zx(0) ∈ [0, 1] a.s.. With ∆N = ρNx (0)− ρN−1
x (0) we get

∆N =
Nwx(N + 1)

zx(0)
< N a.s. . (50)

Analogous to the above this leads to

E∆N ≤ N P

(wx(N)

zx(0)
> 1/N3

)

+ 1/N2 , (51)

and since zx(0) > 1 a.s. we have

P

(wx(N)

zx(0)
> 1/N3

)

≤ P(wx(N) > 1/N3) = P

(

σSx(N) >
b

1− γ
N1−γ − 3 logN

)

, (52)

which is again bounded by exp
[

−n1−2γ
(

b
1−γ

)2( 1
2σ

)]

. The rest follows analogously. 2

B. Calculations of section V.

As Sx has independent increments, E[Sx(n)Sx(k)] = min{n, k}. The first expected value in the bracket in
(32) is

∑∞

n=0 np(n) = ρ(µ). For the second expected value we need to compute terms of the form

∞∑

n,k=0

min{n, k} p(n)p(k) = −
∞∑

n=0

np(n)2 + 2

∞∑

n=0

np(n)F̄µ(n) (53)

Now use p(n) = F̄µ(n)− F̄µ(n+ 1) and the trick

(
F̄µ(n)− F̄µ(n+ 1)

)
F̄µ(n) =

1

2

(
F̄µ(n)

2 − F̄µ(n+ 1)2 + (F̄µ(n)− F̄µ(n+ 1))2
︸ ︷︷ ︸

p(n)2

)
(54)

and summation by parts

∞∑

n=0

n(F̄µ(n+ 1)2 − F̄µ(n)
2) = −

∞∑

n=0

F̄µ(n)
2 , (55)

which leads to
∞∑

n,k=0

min{n, k} p(n)p(k) =
∞∑

n=0

F̄µ(n)
2 . (56)

One finally obtains

E
[
Epn

[X2]− Epn
[X ]2

]
= ρ(µ, 0)−

∞∑

n=0

F̄µ(n)
2 =

∞∑

n=0

F̄µ(n)(1 − F̄µ(n)) (57)

To estimate the density we simply derive the free energy expansion wrt µ. It is useful to compute first

∂F̄µ(k)

∂µ
=

∑

n≥k

p(n) (n− ρ(µ)) =
∑

n≥k

F̄µ(n)− ρ(µ)F̄µ(k) . (58)
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