4th Annual Sprout Grants – Call for applications

12 02 2014

Bring your research and entrepreneurial ambitions to life!

The Brandeis University Virtual Incubator invites member of the Brandeis Community (undergrads, grad students, postdoctoral fellows, faculty, staff) to submit an application for a “Sprout Grant”. These grants are intended to stimulate entrepreneurship on campus and help researchers launch their ideas and inventions from Brandeis to the marketplace.

This spring we will be awarding $50,000 to be shared amongst the most promising proposals.

Come get your questions about the Sprout grant answered at one of our upcoming information sessions.

Info sessions:

Tuesday      February 18th    1pm – 2pm

Tuesday      February 25th    10am – 11am

Thursday     February 27th    11am – noon

Tuesday      March 4th          11am – noon

All information sessions will be held in the Shapiro science center 1st floor library, room 1-03 (the glass walled room near the elevators).

Deadlines: Preliminary applications are due on Friday, March 7th

Benefits of participation:

  • Teams that are selected to submit full applications will be given assistance in further developing their ideas into an effective business pitch.
  • Sprout grant winners will be connected with an experienced mentor, and given further assistance in getting their ideas to market by the Office of Technology Licensing.
  • Previous winners have come from many departments: Neuroscience, Biology, Biochemistry, Physics and Computer Science. Some of the funded technologies have resulted in patent applications and are moving towards commercial development. Read more about previous winners from your department here: Sprout winners 2011, Sprout winners 2012, Sprout winners 2013.

For more information go to our website (http://www.brandeis.edu/otl/grants/index.html) or contact Melissa Blackman at melblack@brandeis.edu.

New team-taught course offered spring 2014: “Differential geometry in classical and quantum mechanics”

23 12 2013

1) Introduction and Motivation

We would like to call attention to a new class offered this winter/spring 2014 quarter, being taught jointly by Prof. Daniel Ruberman in Mathematics and Prof. Albion Lawrence in Physics.  This is being listed jointly as Physics 202a (Quantum Field Theory) and Math 221b (Topics in Topology).  It is being team-taught under the auspices of the Brandeis Geometry and Dynamics IGERT program.

This course aims to introduce basic notions of fiber bundles and connections on them, and their application to basic physical examples in classical and quantum mechanics: especially the mechanics of deformable bodies, and Berry’s phase.  The target audience is mathematics and physics students, and mathematically inclined students in physical chemistry, neuroscience, computer science, and economics.  The essential principles here find applications to chemical and neural oscillators and control theory; there have even been suggestions that it is a useful language for describing currency trading.

The mathematics covered here typically appears in advanced courses on quantum and statistical field theory.  However, it has much broader applicability, and the instructors felt that studying more elementary physics examples better highlighted the essential mathematics and lead to a broader perspective that would better prepare students to find new and creative uses for the mathematics.  Furthermore, they allow us to teach a broader audience, as the essential physics background is straightforward and can be explained without the student needing two years of graduate-level physics courses.

This course is essentially a graduate course, but it is certainly appropriate for senior undergraduates with a solid mathematical background (math and physics majors especially).  The modern mathematical language of manifolds and vector bundles will be introduced and used throughout, but with reference to physical and geometric notions.  This will provide physics students with an appropriate vocabulary for further study, while mathematics students can try to grasp the intuition behind the formalism.  Note that the course satisfies one of the IGERT course requirements; however, we strongly encourage non-IGERT students to enroll.

The course is scheduled to take place Mondays and Wednesdays from 2-3:20pm.

2) Course Outline

The course outline below is preliminary and aspirational.

1.  Introduction:  Physics and mathematics of manifolds and connections.

  • Falling cats.
  • Manifolds: surfaces in 3-space; configuration spaces of physical objects.
  • Differentiation of functions and vector fields.
  • Brief introduction to differential forms.

2.  Line bundles and U(1) bundles, and connections on them.

  • Curvature of a U(1) connection.
  • Chern class of a U(1) connection.

3.  Applications of U(1) bundles.

  •  Electricity and magnetism as a U(1) connection.  Example: Dirac monopole.
  •  Deformable bodies in two dimensions: requires some simple words on conservation of angular momentum.
  • (Abelian) Berry’s phase.  A basic introduction to quantum mechanics: Hilbert space structure, role of Hamiltonian, adiabatic approximation.

4. Vector bundles, tangent, and cotangent bundles.

  • Covariant derivatives.

5. Applications.

  • Nonabelian Berry’s phase.

6.  Principal bundles

  • Frame bundles; SU(2) bundles.
  • Configuration space as principle bundle.

7. Applications

  •  Falling cats.
  •  Gauge theory and 4-manifolds (brief introduction).

3) Prerequisites

A minimum mathematical preparation will include multivariable calculus and linear algebra [Math 15/20 or 22ab], as well as basic notions of analysis such as continuity and differentiability [Math 40a/110a or 34a/104a].  Geometric analysis [Math 110a/140a] would be helpful but is not required.  For physics students, a good undergraduate course in quantum mechanics and in advanced classical mechanics (Lagrangian and Hamiltonian mechanics) will be helpful.

4)  Reading List

The required (and most recommended) reading will consist of online materials placed on the course LATTE page.

4.1 Required reading

Required reading will include:

  •  Lecture Notes on Bundles and Connections, by Chris Wendl.  Online lecture notes from an MIT course on differential geometry.
  •  Some parts of the article Gauge fields in the separation of rotation and internal motions in the n-body problem, by Robert G. Littlejohn and Matthias Reinsch.  Reviews of Modern Physics 69, pages 213-274.  This describes the basic kinematics of deformable bodies in some generality, with a very nice two-dimensional example worked out.
  •  Further reading on Berry’s phase, including Michael Berry’s original paper “Quantal phase factors accompanying adiabatic chaanges”, Proceedings of the Royal Society A392 45-57.

4.2 Recommended background reading and reviews

We will update this list as the semester approaches.  We welcome your input if you find additional nice readings on the subjects covered here.

  • Gravitation, Gauge Theories, and Differential Geometry, by Tohru Eguchi, Peter B. Gilkey, and Andrew J. Hanson, Physics Reports 66, pages 213-393.  A very readable introduction to differential geometry, written for physicists, with many instructive examples.
  •  Geometric Phases in Physics, by Alfred Shapere and Frank Wilczek. World Scientific (1989).

4.3 Original research papers of interest

Also to be updated before and during the semester.  Again, we welcome your input here.

  •  A dynamical explanation of the falling cat phenomenon, T.R. Kane and M.P. Scher, Int. J. Solids Structures 5 pp 663-670.
  •  Geometric phase shifts in chemical oscillators, M.L. Kaplan, T.B. Kepler, and I.R. Epstein, Nature 349 p. 506-8.

Research on active colloids by Brandeis team is highlighted in APS Physics blog

13 12 2013

G. S. Redner, A. Baskaran, and M. F. Hagan. Phys. Rev. E 88, 012305 (2013).

by Gabe Redner

A recent article in Physics, the APS online magazine, highlights recent work done in the Hagan lab. Active particles such as swimming bacteria are of interest to physicists due to their nonequilibrium nature; since each particle is constantly burning energy as it swims, the system is driven to produce behaviors such as flocking and swarming that are not seen in traditional fluids.  To understand these systems, theorists have developed highly simplified models to isolate the most fundamental active behaviors and study them in detail.  This article rounds up several recent advances in the field from the Hagan lab and others.

Thermalization From Glasses to Black Holes

5 12 2013
bangalore2Textbook thermodynamics treats equilibrium states of large systems, in which macroscopic variables (temperature, pressure and so on) remain static, and how small perturbations of such systems relax with time.  There have been a number of exciting recent developments in studying (a) how such equilibrium states are reached in a closed quantum or classical system, and (b) generalizations of thermodynamics to small systems and to systems that are intrinsically out of equilibrium.  This work spans both classical and quantum mechanics, and ties together biological systems, soft matter (such as glasses and granular systems), quantum matter, nuclear physics, quantum information, quantum gravity, and string theory.
This is clearly an area of inquiry in which contact between these different fields will lead to important advances, much as contact between condensed matter and particle physics did for the study of symmetry breaking (the source of multiple Nobel prizes, including this year’s and of the renormalization group.  We (Brandeis Physics  faculty Aparna BaskaranBulbul ChakrabortyMatthew Headrick, and Albion Lawrence) felt that an ideal way to promote this was to put together an intensive series of pedagogical lectures covering recent results in the aforementioned fields.  With the encouragement of the National Science Foundation (due in large part to Brandeis’s IGERT program in Geometry and Dynamics  we took advantage of our deep contacts with the Indian physics community to put together an Advanced Studies Institute (ASI) on thermalization, under the auspices of the new International Center for the Theoretical Sciences (ICTS)  in Bangalore, and co-organized by Chandan Dasgupta  (Indian Institute of Science), Gautam Mandal (TIFR, Mumbai), Sanjib Sabhapandit  (Raman Research Institute and ICTS), and Krishnendu Sengupta  (IACS , Kolkata).
The school was extremely successful, with beautiful lectures on cutting-edge physics from the leading experts in their respective areas.  We recommend these lectures highly to those interested in these subjects.  Links to the lecture notes, and to some related review articles, can be found here:
and there is a YouTube channel for the lectures here:

Matthew McNeely of the Physics Department wins 2013 Ennis Award

4 12 2013
photo by Mike Lovett

photo by Mike Lovett

Matthew McNeely, an electrical engineer who has worked in the Physics Department for thirty-two years, was recently presented with the Ennis Award.  The Ennis Award recognizes an administrative employee who “has a history of consistent contributions to the well-being of the university” and “treats all members of the community with dignity and respect.”  Matt will have his name engraved on a plaque, which remains in the Physics Department over the next year and will receive a $500 check.  Matt and the other award winners were recognized for their contributions to the university at the 2013 Employee Recognition Luncheon on Nov. 22.


MRSEC On-Campus Retreat on November 22, 2013

21 10 2013

On Friday, November 22, 2013, the Brandeis Materials Research Science and Engineering Center (MRSEC) will hold an on-campus retreat. The research goal of the MRSEC is to learn how materials are incorporated in biological systems and likewise how biological structures act as materials with highly desirable properties that can be exploited in engineering.

The first part of the retreat will be a joint event with the Biochem/Biophys Friday seminar that takes place at 11:15am – 12:15pm. A lunch will be provided and in the afternoon there will be 3 talks by MRSEC students and postdocs. Wrapping up the day is a poster session/social hour.

Please RSVP if attending to katie55@brandeis.edu and include the following information: NAME/DEPARTMENT/YEAR GRADUATING/TITLE IF STAFF MEMBER

MRSEC Retreat Schedule - Friday, November 22, 2013

11:15am – 12:15pm, Abelson 131 – Welcome from Dean Birren and Seth Fraden; Jane Kondev, “Materials science that we can learn from yeast”
12:15pm – 1:00pm, Pizza Lunch, Shapiro Science Center Lobby
1:15pm – 2:45pm, Abelson 131 – MRSEC talks: Steve DeCamp, Gabe Redner, Charlotte Kelley
2:45pm – 3:00pm, Poster set-up, Shapiro Science Center Lobby
3:00pm – 5:00pm, Poster Session, Shapiro Science Center Lobby, Beer Hour

Physics Department Launches Resource Room for Free Undergraduate Tutoring

20 09 2013


For the first time this fall the Physics Department is offering free tutoring for all undergraduate physics courses. The Physics Resource Room, Abelson-Yalem-Bass 403, is open Sunday through Friday afternoons, and in the early evening Monday through Thursday. Manned by physics graduate students and advanced undergraduate physics majors, it will serve primarily students in the introductory courses Physics 10, 11, 15, 18, and 19, but students from upper-level courses will also be welcome to find help there. The exact hours will vary with the semester, but it is anticipated that about 35 hours per week of tutoring will be offered. The current schedule for the resource room is available on the physics department website. Further information may be obtained from the Physics Undergraduate Advising Head, Professor David Roberts, at roberts@brandeis.edu.

Quantum Field Theory: An Interdisciplinary Study Group

16 09 2013

William Hicks, a grad student in Physics, writes:

    This semester, graduate students from a wide range of departments will be coming together to study quantum field theory (QFT) as part of the interdisciplinary IGERT program. QFT is a subject whose mathematical underpinnings crop up in a wide range of seemingly unrelated fields, and the study group hopes to take advantage of the varied backgrounds of its members. Mathematicians in the group can help provide mathematical rigor, while physicists can help supply the physical intuition for many of the otherwise abstruse corners of the subject.  Students from other disciplines will be able to broaden the discussion by showing how some of the techniques discussed also show up in their fields.

The study group will meet from noon to 1:00 every Wednesday in Goldsmith 226. All are welcome!

Protected by Akismet
Blog with WordPress

Welcome Guest | Login (Brandeis Members Only)