Tag Archives: year in physics

Ready for a smashing success

After two-years of upgrades and repairs, the Large Hadron Collider is back in the particle smashing business — this time at double the energy of its first run. Today, researchers at CERN began recording data from the highest-energy particle collisions ever achieved on Earth, and began a new set of experiments that will shed light on a new realm of physics.

I spoke with professor Gabriella Sciolla about the restart and the frontier of physics.

What are the biggest discoveries physicists hope to make in the coming year with this new, improved experiment?

The big goal is to search for what we call “New Physics,” meaning new elementary particles and new interactions that extend our understanding. We can summarize the search for New Physics in three categories: the search for new elementary particles; the search for dark matter; and the measurement of the Higgs boson’s properties.

New elementary particles are predicted by exotic theories, such as supersymmetry or extra dimensions, but have never been observed.

Dark matter particles, which make up 85 percent of the mass of the universe and have never been observed in the lab, can be produced in high-energy proton-proton collisions at the LHC. Seeing them for the first time would be a revolutionary achievement.


Watch this video about the Sciolla Lab’s hunt for dark matter


New interactions and new particles will affect the behavior of the Higgs boson. For example, the Higgs will interact with other particles in a way that is different from what the current theory predicts.

What are you most excited about?

Difficult choice! These three avenues are all very promising and may all lead to a paradigm shift in physics. However, choices need to be made since we cannot work on each and every topic.

At the very beginning of Run 2, my group will focus on two topics: extra dimensions and dark matter. Theories of extra dimensions predict a new particle, known as Graviton, that decays into two energetic elementary particles called muons. Given our know-how in muon reconstruction, it is natural for my group to lead these searches.

This experiment costs an awful lot of money. What do you tell people who question its value?

It’s hard to put a price tag on knowledge. This experiment gives us a chance to understand how the universe works at its most fundamental level. The technological applications we develop in pursuit of scientific answers are important. But understanding the basic science will benefit humanity in the long term.

The LHC experiments are international projects, so we share the costs. The ATLAS experiment, for example, was built by a collaboration of 38 countries on four continents.

What will you be thinking when the experiment officially restarts?

It will certainly be a historic moment. These collisions could change the way we think about particle physics. Since I am responsible for the reconstruction and calibration of muons in the ATLAS experiment, I will be totally absorbed in delivering the best quality muons to the collaboration. Muons are crucial ingredients for many searches for New Physics.

If the accelerator works as expected, we need only a few months of data to publish our first results. We can’t wait!

Birds, bees and the nature of space

Ever wonder what theoretical physicists actually do? In honor of the 100th anniversary of Albert Einstein’s theory of general relativity, ReAction is sitting down with theoretical physicists at Brandeis to find out.

Theoretical physics is a lot like sex, Nobelist Richard Feynman once quipped. “Sure, it may give some practical results, but that’s not why we do it.”

The prevailing stereotype outside — and inside — the sciences is that theoretical physicists have their gaze firmly fixed on their navels and play in a sandbox of their own creation.

It’s time to throw that stereotype out the window (and note how it falls to Earth with constant acceleration. Thanks, theoretical physics!)

Sure, theoretical physics can get weird, and some theories are pretty far out, but inquiry is always driven by a hunger to understand the universe fundamentally.

Consider Brandeis’ High Energy and Gravitational Theory Group.

These physicists research bizarre principles like holography, which postulates that all the information in the universe is stored on a two-dimensional surface, and we are mere projections of that information. And then there’s quantum entanglement, which even Einstein called “spooky.”

But at the core of the group’s research is a simple question: What is space?

Einstein described the way space is connected to time and how it interacts with mass. But he never theorized what space is, how it’s formed or what it’s made of.

Einstein's general relativity reimagined gravity not as force, as Newton described it, but as space curved by matter, through which matter travels.
General relativity reimagined gravity not as force, as Newton described it, but as space curved by matter. Courtesy/NASA

“Since Einstein, our questions have gotten bigger and deeper,” says Matthew Headrick, assistant professor of physics. “We want to figure out the nature of space.”

The answer lies somewhere between two pillars of modern theoretical physics — general relativity ( GR, which describes gravity) and quantum field theory ( QFT, which describes, among other things, particle physics). These fundamental theories describe two very different aspects of our universe and are written in different mathematical languages.

Watch this video for an overview of QFT and GR

“Shockingly, in certain cases, theorists have discovered that these two very different theories are actually secretly the same,” Headrick says. “Between GR and QFT, there is some kind of one-to-one map. We know some of the shared points but we’re still in the dark about many others.”

This one-to-one map is holography and it represents GR, which lives in ordinary three-dimensional space, by a QFT living on a two-dimensional surface — just like a hologram.

Essentially, Headrick and other theoretical physicists are building a Rosetta Stone —a bilingual dictionary of sorts — using holography, general relativity and quantum field theory. This translational tool will expose how GR and QFT are connected to each other and how to build a new language that obeys the properties of both GR and QFT.

Word by word, Headrick and his colleagues are testing and building a framework of conjectures.

“If you have confidence that a conjecture obeys the properties it needs to obey, you can enter it into the dictionary,” Headrick says. “Each small entry tells us something more about space.”

One conjecture Brandeis theorists pioneered has to do with the relationship between the geometry of space and the quantum information it contains.

Mathematically, certain areas in curved space contain minimal surfaces — a surface that minimizes its area. Dip a wand into soapy water and the soap film will stretch perfectly flat across the shape of the wand. This is a minimal surface.

Bubble Wand

“If the area of that soap film is expressed in fundamental units, it tells us about the quantum entanglement in the QFT,” says Headrick.

In other words, Headrick and his colleagues use the mathematical language of general relativity — geometry — to extrapolate a quantum property. That calculation, in turn, provides new information about how the two languages are interconnected.

That idea also provides a clue to the nature of space.

“It suggests that, fundamentally, the space that we live in and take for granted is stitched together out of quantum entanglement,” Headrick says.

Watch this video for an overview of entanglement

The next step is to figure out why.

The answers to these and other questions will, with any luck, give researchers the words and syntax to compose a theory of gravity in the language of quantum mechanics. It’s the Holy Grail of modern theoretical physics: a theory of quantum gravity.

But what does this have to do with reality? Richard Feynman may not have cared about the practical results of theoretical physics, but some do.

Be patient, Headrick says.

It took Einstein 10 years to develop general relativity, and it took physicists another 40 years to understand the black holes it predicted. Now, 100 years after the theory’s publication, relativity is ubiquitous in our daily lives. Without an understanding of it, for example, we wouldn’t have GPS.

But more important than the inventions a theory spurs, is the knowledge a theory advances, Headrick says.

“Einstein, Feynman and others profoundly changed our understanding of nature,” he says.

And that’s why theoretical physicists do it.

 

Special thanks to Cesar Agón for helping in the development of this story. 

Enter Sandwoman

Let’s put winter behind us — it’s time to think about sand.

Physicists think about sand a lot because they don’t really understand how it works. How can sand — and other granular materials such as grains or rocks — behave both like a liquid that flows through fingers and a solid that forms dunes?

Physicists have a theoretical framework to predict how microscope objects like molecules flow and freeze but lack the fundamental concepts to describe how assemblies of macroscopic objects behave similarly.

Last year, Bulbul Chakraborty, the Enid and Nate Ancell Professor of Physics received a three-year, $1 million grant from the W.M. Keck Foundation to develop the first predictive theoretical framework to characterize the collective behavior of a large number of macroscopic objects.

BulbulSand
This theoretical representation of experimental data (Behringer Lab.) provides a quantitative tool for identifying the fluid to solid transition in a granular solid. The fluctuations in the net show the change in strength of the solid. Credit: Sumantra Sarkar, Brandeis University

She and her team are developing quantitative tools for identifying the fluid to solid transition in granular solids in order to build a theoretical framework to describe assemblies of macroscopic objects.

Here is a peak inside her lab.