Meet the Science UDRs at the Ultimate Science Navigation Event (9/23)

Ultimate Science Navigation posterAt The Ultimate Science Navigation event TOMORROW (9/23), students can collaborate with the science UDRs to learn about the different offerings in the sciences, how to navigate each major/minor, what each major/minor has to offer, all with an emphasis on exploring the intersections between different programs in the sciences. We will have UDRs representing biochemistry, biology, neuroscience, chemistry, physics, and biophysics!

Students can join in the morning on Zoom from 9:30-10AM, or for the rest of the day through the new Brandeis science community Slack workspace to discuss their questions related to the majors with the UDRs! Email Lance Babcock (lbabcock@brandeis.edu), Maggie Wang (maki@brandeis.edu) or the other science UDRs for the Zoom link and Slack workspace link.

Working towards diversity, equity and inclusion in the sciences

Bulbul ChakrabortyBulbul Chakraborty
Enid and Nate Ancell Professor of Physics
Division Head, Sciences, School of Arts and Sciences

This blog is addressed to my colleagues in the division of science. 

As scientists, we pride ourselves on solving problems, often ones that lead to paradigm shifts.  A challenge that we have all grappled with is how to cultivate and nurture a truly diverse community of scientists.  How do we create an environment that is inclusive and accessible to all that seek to enter the sciences and experience the invigorating practice of  science that  we live and breathe?  How do we open our doors and not be gatekeepers? 

I am writing this blog because the many conversations that I have had over this summer has convinced me that this is the right time for a concerted effort to push towards our objectives. As scientists we know that half the battle is going to the core of a problem, and representing it in a way that tells us what actions to take.   What I have become aware of is  that the anecdotal evidence on who leaves the sciences is being made quantitative and rigorous.  Words are being put to our experiences and structures are being offered that we can use to take actions.  We have colleagues at Brandeis and in the broader community of science educators that have thought long and hard about how to bring about change in STEM education. We can all learn from them.  

I am urging all of you to share resources that you are aware of that will help us create actionable goals and structural changes.  Towards that, here is a link to an organization called “SEA CHANGE”, within the auspices of the American Association for the Advancement of Science: https://seachange.aaas.org/.  In particular, they are hosting a series of Webinars under the banner “Talking about Leaving Revisited”: https://seachange.aaas.org/events  that I have registered for and I encourage you to do so if you can.

I intend to make this a monthly blog that reflects my thoughts on diversity, equity and inclusion in the sciences at Brandeis.

Andrea Guerrero and Gina Turrigiano Receive 2020 Gilliam Fellowship

Gina Turrigiano & Andrea Guerrero

Andrea Guerrero (left) and Gina Turrigiano (right)

Andrea Guerrero, a Neuroscience PhD student working in the Turrigiano lab, a 2020 Gilliam Fellowships for Advanced Study recipient. The Gilliam Fellowship is awarded to the student and dissertation adviser, therefore Gina Turrigiano will also participate in this fellowship. Turrigiano said, “I am really pleased that Andrea was awarded this fellowship, which recognizes her potential to become a scientific leader.  I am also really excited at the opportunity to improve my mentoring skills that this terrific program provides to me as her PhD advisor.”

The purpose of the Gilliam Fellowship is to increase diversity among scientists who are preparing for leadership roles, particularly as college and university faculty members.  Fellows receive up to three years of support for dissertation research, typically in years three, four, and five of their PhD study. The Gilliam Fellowship is part of HHMI.

In response to receiving the award Guerrero said, “I am honored and excited to be selected as a 2020 HHMI Gilliam Fellowship recipient as it will aid my own advancement in an academic-track career and will importantly promote diversity and inclusion within the Brandeis science community.”

Andrea describes her research as follows:

“The human Shank3 gene is strongly associated with Autism Spectrum Disorder (ASD). Shank3 protein functions as a scaffold that plays a crucial role in synapse formation and maintenance. Prior work in our lab supports the idea that differential Shank3 phosphorylation alters its activity. Phosphomimetic and phosphodeficient mutants show dysfunction in the mechanisms that normally maintain brain circuitry homeostasis. In order to understand how Shank3 is able to do this, I will investigate how the phosphorylation state of Shank3 changes its synaptic localization, protein binding interactions, and cellular signaling pathways in vitro. Additionally, I will assess the effects of overexpression of Shank3 phosphorylation mutants on synaptic plasticity within the rodent primary visual cortex. My research project has the potential to uncover novel cellular pathways that can be targeted for ASD therapeutic development.”

 

 

Applied Mathematics and AI meet Law and Social Justice

Jonathan Touboul

For the past two years, Applied Mathematics Professor Jonathan Touboul and his team has been working in collaboration with Law Professor Samuel Dahan at Queen’s University (Canada) in modeling legal decisions and predicting court decisions on Canadian labor law. Their academic work covers the determination of a worker’s status or the calculation of a severance package (paper appearing in a forthcoming issue of the McGill Law Journal). With the COVID-19 crisis and nearly 2 million Canadian jobs lost in 2 months, Touboul, Dahan, Prof. Maxime Cohen (McGill) and their colleagues realized that their research could be applied to assist more people, and serve to help democratize legal services, particularly towards those who lack proper access to law and legal information.

Joining their efforts with a team of law and computer science students at Queen’s University, Jonathan Touboul and his team provided modeling and data science expertise to develop predictive algorithms that helped launch MyOpenCourt.org. This is a free AI powered platform that offers easy access to their research and algorithms to provide personalized predictions, explanations, list of most similar situations from the case law, and offers the option to connect the user with a network of pro-bono lawyers for a free consultation.

Learn more:

• “Championing AI for social justice”, Queens University
• “Conflict Analytics Lab launches app for workers laid off during the pandemic”, McGill University

Susan Lovett elected to the American Academy of Arts and Sciences

Susan LovettSusan Lovett, the Abraham S. and Gertrude Burg Professor of Microbiology, has been elected to the American Academy of Arts and Sciences. She was among the 276 outstanding individuals that were elected to the Academy in 2020 and announced on April 23. Brandeis University Professor, Anita Hill, joins Professor Lovett as a 2020 member of AAAS.

The Lovett lab studies the fundamental mechanisms by which cells preserve genetic information by the study of DNA damage repair and mutation avoidance in the model organism Escherichia coli. Additionally, they research how cell cycle events including DNA replication and chromosome segregation are coupled to cellular physiology and to the status of the chromosome.

Lovett joins other Brandeis science faculty members: Jeff Gelles, Gina Turrigiano, James Haber, Michael Rosbash, Eve Marder, David Derosier, Gregory Petsko, Stanley Deser, and Edgar Brown, Jr.

Founded in 1780, the Academy recognizes the outstanding achievements of individuals in academia, the arts, business, government, and public affairs.

Read more: BrandeisNow

DNA molecules tell nanoparticles how to self-assemble

Nature uses self-assembly to make a diversity of complex structures, such as biomolecules, virus shells, and cytoskeletal filaments. Today a key challenge is to translate this assembly process to artificial systems. DNA-coated nanoparticles provide a particularly promising approach to realizing this vision, since the base sequences can be designed to encode the formation of a chosen structure.

A recent publication from the Rogers Lab shows that interactions between DNA-coated particles can be encoded using DNA oligomers dispersed in solution that bind the particles together.  By changing the linker sequences in solution, Ph.D. students Janna Lowensohn and Alex Hensley showed that the same set of components can be directed to form a variety of different crystal structures. Going forward, this approach may be used to create programmable materials that can sense and respond to their environment.

 

DNA instructions

Paper: Self-Assembly and Crystallization of DNA-Coated Colloids via Linker-Encoded Interactions. Lowensohn J, Hensley A, Perlow-Zelman M, Rogers WB. Langmuir. 2020 Feb 18. doi: 10.1021/acs.langmuir.9b03391. (PubMed abstract)

Protected by Akismet
Blog with WordPress

Welcome Guest | Login (Brandeis Members Only)