What happens when you take an ion channel and remove all the parts that conduct ions? The answer might be surprising.
The Drosophila ether-à-go-go gene codes for a potassium channel involved in olfaction, learning, and locomotion. It is not solely a potassium channel, however. In a recent paper in Mol. Cell. Neurosci., Brandeis postdoc alum Xiu Xia Sun and Neuroscience grad student Lynn Bostrom from the Griffith lab show that an alternatively spliced form, Eag80, contains no channel domains and localizes to the nucleus. They further show that Eag80 can act to activate signal transduction pathways. This splicing can be stimulated by calcium and protein kinases, suggesting that this splice form may have a significant role in regulating neuronal function.