All animal and plant cells contain a highly elaborate system of filamentous protein polymers called the actin cytoskeleton, a scaffold that can be rapidly transformed to alter a cell’s shape and function. A critical step in reconfiguring this scaffold is the rapid disassembly (or turnover) of the actin filaments. But how is this achieved? It has long been known that the protein Cofilin plays a central role in this process, but it has been unclear how Cofilin achieves this feat. Cofilin can sever actin filaments into smaller fragments to promote their disassembly, but whether it also catalyzes subunit dissociation from filament ends has remained uncertain and controversial. Until now, this problem has been difficult to address because of limitations in directly observing Cofilin’s biochemical effects at filament ends. However, a new study published in Nature Communications led by postdoctoral associate Dr. Shashank Shekhar, jointly mentored by Bruce Goode, Jeff Gelles and Jane Kondev, uses microfluidics-assisted single molecule TIRF imaging to tackle the problem.
The new study shows that Cofilin and one other protein (Srv2/CAP) intimately collaborate at one end of the actin filament to accelerate subunit dissociation by over 300-fold! These are the fastest rates of actin depolymerization ever observed. Further, these results establish a new paradigm in which a protein that decorates filament sides (Cofilin) works in concert with a protein that binds to filament ends (Srv2/CAP) to produce an activity that is orders of magnitude stronger than the that of either protein alone.
The work was funded by National Institutes of Health, National Science Foundation MRSEC and Simons Foundation grant.