Physics department mourns passing of Professor Emeritus Sam Schweber

Sam SchweberSam Schweber, Professor Emeritus of Physics, died May 14th at the age of 89. A theoretical physicist and historian of science, Sam was among that first generation of Brandeis faculty whose genius turned a fledgling institution into a university of the first rank. He published his first book in 1956, when not yet thirty, and his last in 2012, in his mid-eighties. His was an extraordinary life and career.

Sam was born in Strasbourg and came to this country at the age of 14. Like many immigrants and children of immigrants, he attended college at City College of New York, and he then went on to earn an M.S. from the University of Pennsylvania and a Ph.D. from Princeton. A postdoctoral fellowship at Cornell gave him the special opportunity to work under Hans Bethe (whose biography he wrote, many years later). Sam came to Brandeis in 1955 as associate professor of physics and quickly became involved in building the young department. In 1957, the Physics Department started a graduate program, and the following year it established, at Sam’s initiative, a summer institute in theoretical physics, bringing to campus leading physicists as well as selected graduate students and postdocs, for weeks of seminars and colloquia. The institute ran annually for fifteen years, until the federal funding ceased.

The young Sam Schweber had clearly impressed Hans Bethe. In 1955 he co-authored with Bethe (and a third physicist) the two-volume Mesons and Fields, and in 1960, the same three authors published Quantum Theory of Fields. A year after that, in his foreword to Sam’s new book, An Introduction to Relativistic Quantum Field Theory, Bethe observed, “It is always astonishing to see one’s children grow up, and to find that they can do things which their parents no longer fully understand.” This book remains in print five decades after its initial publication.

Sam continued to conduct research and publish in the field of quantum field theory, while also playing an integral part in the growth of Brandeis University. His scholarly interests then started to shift. Volunteering to teach a course on how probability entered the sciences, he became fascinated with the history of science and chose to spend his next sabbatical in the History of Science Department at Harvard. In the third decade of his career, Sam became a historian of science. He joined our interdepartmental program in History of Ideas, and in 1982 was appointed to the Koret Chair in the History of Ideas.

Sam became equally eminent in his new field, publishing a series of significant books and helping to found and then lead the Dibner Institute for the History of Science and Technology at MIT. Sam brought to his writing not only rigorous historical research and a deep understanding of science, but also a strong interest in the human dimension and social consequences of scientific research and discovery. Among his many books were Einstein and Oppenheimer: The Meaning of Genius, In the Shadow of the Bomb: Oppenheimer, Bethe and the Moral Responsibility of the Scientist, and Nuclear Forces: The Making of the Physicist Hans Bethe. Describing another of Sam’s books, Freeman Dyson wrote that “he has produced a lively and readable narrative history, with a lightness of touch than can come only to one who is absolute master of his subject.”

Sam continued to be an active scholar and author after his retirement from Brandeis in 2003. In 2011, he won the Abraham Pais Prize for History of Physics. The citation spoke of “his sophisticated, technically masterful historical studies” and his “broadly insightful biographical writing on several of the most influential physicists of the 20th century.” Sam was a Fellow of the American Physical Society, the American Association for the Advancement of Science, and the American Academy of Arts and Sciences. A further measure of his stature and influence came in the past few days, from the Max-Planck-Institut fur Wissenschaftsgeschichte: “It is with deep regret that we announce the passing on May 14, 2017 of the distinguished historian of science, Professor Sam S. Schweber. Sam was a dear colleague and mentor of many at the Institute and will be sorely missed by all those who had the great fortune and pleasure of knowing him.”

That sentiment will surely be echoed by the many former Brandeis colleagues and students who greatly admired Sam and learned from him.

Brandeis’ Pioneering Science Posse Program

Photo: Mike Lovett

Samia Tamazi ’20

BrandeisNow has posted an article about the history and accomplishments of the Brandeis’ Science Posse program. Read the following excerpt or the entire article:

In June, Macareno and his posse, all Class of 2020, get off Amtrak’s Acela Express train and take a shuttle bus to Brandeis for science boot camp. On the first day, they gather in a classroom in the Abelson physics building […]

(Melissa) Kosinski-Collins, who earned a PhD at MIT, tells them college science is profoundly different from high-school science. With equal parts candor and caring, she sets high expectations, describing the intense workload. The students know that they will be held to lofty standards and that she will support them.

Later in the day, they gather around a long lab table in the Shapiro Science Center, in an area Kosinski-Collins calls Hufflepuff — a nod to one of the houses at Harry Potter’s Hogwarts School. An array of equipment is scattered before them — pipettes, balances, bottles of acetic acid (vinegar) and sodium bicarbonate (baking soda). There are also aluminum foil, Kimwipes, Scotch tape and Ziploc bags.

The students’ assignment is to build an air bag. When acetic acid combines with sodium bicarbonate, they produce carbon dioxide. The students must figure out how much of each chemical to add to fully inflate a quart-size Ziploc bag. But they also have to protect an egg placed inside the bag. This is where the foil, tape and extra bags come in. Along with the cushion of air, these items can be used to keep the egg from cracking when they drop the bag from the Science Center steps, about 15 feet above the ground.

There’s an important catch. Several months earlier, at a meeting in New York, the students got the same assignment. They also completed lab reports describing the quantities of chemicals they used and how they arranged the materials inside the bag to protect the egg. These lab reports are now handed out to different students. They have 10 minutes to repeat the earlier experiment using the reports as a guide […]

Read more at BrandeisNow

Pump without pumps

By Kun-Ta Wu, Ph.D.

Pumping water through a pipe solves the need to provide water in every house. By turning on faucets, we retrieve water at home without needing to carry it from a reservoir with buckets. However, driving water through a pipe requires external pressure; such pressure increases linearly with pipe length. Longer pipes need to be more rigid for sustaining proportionally-increased pressure, preventing pipes from exploding. Hence, transporting fluids through pipes has been a challenging problem for physics as well as engineering communities.

To overcome such a problem, Postdoctoral Associate Kun-Ta Wu and colleagues from the Dogic and Fraden labs, and Brandeis MRSEC doped water with 0.1% v/v active matter. The active matter mainly consisted of kinesin-driven microtubules. These microtubules were extracted from cow brain tissues. In cells, microtubules play an important role in cell activity, such as cell division and nutrient transport. The activity originates from kinesin molecular motors walking along microtubules. In cargo transport, microtubules are like rail tracks; kinesin motors are like trains. When these tracks and trains are doped in water, their motion drives surrounding fluids, generating vortices. The vortices only circulate locally; there is no global net flow.

Wu-Pump without Pumps

Figure: Increasing the height of the annulus induces a transition from locally turbulent to globally coherent flows of a confined active isotropic fluid. The left and right half-plane of each annulus illustrate the instantaneous and time-averaged flow and vorticity map of the self-organized flows. The transition to coherent flows is an intrinsically 3D phenomenon that is controlled by the aspect ratio of the channel cross section and vanishes for channels that are either too shallow or too thin. Adapted from Wu et al. Science 355, eaal1979 (2017).

[Read more…]

Physics Graduate Student Receives Kavli Fellowship

Cesar Agon at Kavli Institute Cesar Agon, a graduate student in the High-Energy and Gravitational Theory group, was awarded a prestigious Graduate Fellowship at the Kavli Institute for Theoretical Physics (KITP) at the University of California, Santa Barbara. KITP is one of the world’s leading centers for research in all areas of theoretical physics. In addition to having its own faculty and postdocs, it hosts visiting faculty from around the world and holds conferences and semester-long programs on topics of current interest. The Graduate Fellowship program allows exceptional students to benefit from this activity and the scientific ambience of KITP by spending a semester there. This is a very competitive program, with only about half a dozen students coming from around the world each semester. Agon, who is advised by Profs. Matthew Headrick, Albion Lawrence, and Howard Schnitzer, is currently spending the spring term at KITP, before heading off to Stony Brook University as a postdoc in the fall.

Back in the summer of 2015, Agon had the opportunity to visit KITP during two important programs on the physics frontiers, both of special interest to him, namely ”Entanglement in Strongly-Correlated Quantum Matter” and ”Quantum Gravity Foundations: UV to IR”. That was a great opportunity to meet in person the leaders of the field from around the world in the relaxed and friendly atmosphere of the KITP. Discussions among the researchers and students were tremendously common all around the institute and there were many activities that facilitated such discussions such as daily coffees, lunches, and dinners.

[Read more…]

Two Brandeis Professors Receive 2017 Simons Fellowships

Bit threads in a holographic spacetime

Bit threads in a holographic spacetime

Two Brandeis professors have been awarded highly prestigious and competitive Simons Fellowships for 2017. Daniel Ruberman received a 2017 Simons Fellowship in Mathematics. Matthew Headrick was awarded a 2017 Simons Fellowship in Theoretical Physics. This is the first of two articles where each recipient’s award-winning research is described.

Matthew Headrick’s research studies the phenomenon of entanglement in certain quantum systems and its connection to the geometry of spacetime in general relativity. This very active area of research is the culmination of three developments in theoretical physics over the past 20 years.

First, in 1997, string theorists discovered that certain quantum systems involving a large number of very strongly interacting constituents — whose analysis would normally be intractable — are secretly equivalent to general relativity — a classical theory describing gravity in terms of curved spacetime — in a space with an extra dimension. For example, if the quantum system has two dimensions of space, then the general relativity has three; the phenomenon is thus naturally dubbed “holography”.

This equivalence between two very different-looking theories is incredibly powerful, and has led to much progress in understanding both strongly-interacting quantum systems and general relativity. However, it is still not fully understood how or precisely under what conditions such an equivalence holds.

[Read more…]

Amy Lee Named 2017 Searle Scholar

Figure from Amy Lee

Assistant Professor of Biology Amy Si-Ying Lee was named a 2017 Searle Scholar, receiving $300,000 in flexible funding to support her work over the next three years. Lee’s research is focused on discovering how gene regulation occurs through novel mechanisms of mRNA translation. Specifically, her lab studies how non-canonical translation pathways shape cell growth and differentiation, and why defects in mRNA translation lead to developmental disorders and cancer.

Lee, who came to Brandeis in Summer 2016, has a PhD form Harvard and did her postdoc at UC Berkeley. She has also been awarded a 2017 Sloan Research Fellowship and in January won the Charles H. Hood Foundation Child Health Research Award. Lee’s lab is up and running and recruiting postdocs and PhD students (through the Molecular & Cell Biology and Biochemistry & Biophysics graduate programs). In Fall 2017, Lee will teach BIOL 105, Molecular Biology.

Protected by Akismet
Blog with WordPress

Welcome Guest | Login (Brandeis Members Only)