Sekuler elected to Society of Experimental Psychologists

Robert Sekuler photoLouis and Frances Salvage Professor of Psychology and Professor of Neuroscience Robert Sekuler has been elected a fellow of the Society of Experimental Psychologists.  The society, founded by Edward Titchener in 1904, elects 6 new members annually from among the leading experimentalists in North America. Sekuler and his lab continue to research issues involved with visual perception, visual and auditory memory, and the cognitive process, often using video games in the research process.

Data Diving for Genomics Treasure

Laboratories around the world and here at Brandeis are generating a tsunami of deep-sequencing data from organisms large and small, past and present. These sequencing data range from genomes to segments of chromatin to RNA transcripts. To explore this “big data” ocean, one can navigate the portals of the National Computational Biotechnology Institute’s (NCBI’s) two signature repositories, the Sequencing Read Archive (SRA) and the Gene Expression Omnibus (GEO).  With the right bioinformatics tools, scientists can explore and discover freely-available data that can lead to new biological insights.

Nelson Lau’s lab in the Department of Biology at Brandeis has recently completed two such successful voyages of genomics data mining, with studies published in the Open Access journals of Nucleic Acids Research (NAR) and the Public Library of Science Genetics (PLoSGen).   Publication of both these two studies was supported by the Brandeis University LTS Open Access Fund for Scholarly Communications.

In this scientific journey, the Lau lab made use of important collaborations from across the globe. The NAR study employed openly shared genomics data from the United Kingdom (Casey Bergman lab) and Germany (Björn Brembs lab).  The PlosGen study employed contributions from Austria (Daniel Gerlach), Australia (Benjamin Kile’s lab), Nebraska (Mayumi Naramura’s lab), and next door neighors (Bonnie Berger’s lab at MIT).  This collaborative effort has been noted at Björn Bremb’s blog, who has been a vocal advocate for Open Access and Open Data Sharing to improve the speed and accessibility of communicating scientific research.

tidal fly banner

In the NAR study, postdoctoral fellow Reazur Rahman and the Lau team devised a program called TIDAL (Transposon Insertion and Depletion AnaLyzer) that scoured over 360 fly genome sequences publicly accessible in the SRA portal.  Their study discovered that transposons (jumping genetic parasites) formed different genome patterns in every fly strain.  Common fly strains with the same name but living in different laboratories turn out to have very different patterns of transposons. Simply noting “Canton-S” or “Oregon-R” strains are used may not be enough to fully characterize a strain.  The Lau lab hopes to utilize the TIDAL tool to study how expanding transposon patterns might alter genomes in aging fly brains.


The piRNAs from these animals were compared in the PLoS Genetics story

In the PLoSGen study, visiting scientist Gung-wei Chirn and the Lau team developed a novel small RNA tracking program that discovered Piwi-interacting RNA loci expression patterns from many mammalian datasets extracted from the GEO portal.  Coupling these datasets with other small RNA datasets created in the Lau lab at Brandeis, the Lau group discovered a remarkable diversity of these RNA loci for each species. For example, the piRNA genomic loci made in humans were quite distinct from other primates like the macaque monkey and the marmoset.  However, a special set of these genomic loci have been conserved in their piRNA expression patterns, extending across humans, through primates, to rodents, and even to dogs, horses and pigs.

These conserved piRNA expression patterns span nearly 100 million years of evolution, which is quite a long time for these types of loci to be maintained for some likely important function in mammals.  To test this hypothesis that evolution preserved these piRNAs for their utility, the Lau lab analyzed two existing mouse mutations in these loci.  They showed that the mutations indeed affected the generation of the piRNAs, and these mice were less fertile because sperm count was reduced.  The future studies from the Lau lab will explore how infertility diseases may be linked to these specific piRNA loci.

Visualizing a protein decision complex in actin filament length control

Seen at the Gelles Lab Little Engine Shop blog this week, commentary on a new paper in Nature Communicationspublished in collaboration with the Goode Lab and researchers from New England Biolabs.

“Single-molecule visualization of a formin-capping protein ‘decision complex’ at the actin filament barbed end”

Regulation of actin filament length is a central process by which eukaryotic cells control the shape, architecture, and dynamics of their actin networks. This regulation plays a fundamental role in cell motility, morphogenesis, and a host of processes specific to particular cell types. This paper by recently graduated [Biophysics and Structural Biology] Ph.D. student Jeffrey Bombardier and collaborators resolves the long-standing mystery of how formins and capping protein work in concert and antagonistically to control actin filament length. Bombardier used the CoSMoS multi-wavelength single-molecule fluorescence microscopy technique to to discover and characterize a novel tripartite complex formed by a formin, capping protein, and the actin filament barbed end. Quantitative analysis of the kinetic mechanism showed that this complex is the essential intermediate and decision point in converting a growing formin-bound filament into a static capping protein-bound filament, and the reverse. Interestingly, the authors show that “mDia1 displaced from the barbed end by CP can randomly slide along the filament and later return to the barbed end to re-form the complex.” The results define the essential features of the molecular mechanism of filament length regulation by formin and capping protein; this mechanism predicts several new ways by which cells are likely to couple upstream regulatory inputs to filament length control.

Single-molecule visualization of a formin-capping protein ‘decision complex’ at the actin filament barbed end
Jeffrey P. Bombardier, Julian A. Eskin, Richa Jaiswal, Ivan R. Corrêa, Jr., Ming-Qun Xu, Bruce L. Goode, and Jeff Gelles
Nature Communications  6:8707 (2015)

The capping protein expression plasmid described in this article is available from Addgene.

Readers interested in this subject should also see a related article by Shekhar et al published simultaneously in the same journal.  We are grateful to the authors of that article for coordinating submission so that the two articles were published together.

FOXO links stress to the innate immune response in flies

Life is tough. Every living thing is constantly dealing with insults that damage or disrupt homeostasis. At the cellular level these insults, or stresses, come in multiple forms: starvation, oxidative stress, heat shock, radiation damage, and infection. In response to these stresses, organisms have evolved numerous mechanisms to promote survival. Broadly speaking, an insult stimulates various signaling cascades that alter gene expression in the cell.

One way this is achieved is through the “turning on” of transcription factors. One such transcription factor is FOXO, which is activated under many types of stress, both metabolic and environmental. Another way gene expression can be accomplished is the post-transcriptional control of gene expression. An important player of post-transcriptional control is the small RNA pathways composed of the RNA interference (RNAi), micro RNA (miRNA), and PIWI RNA (piRNA) branches. In a recent article from the Marr lab titled “FOXO regulates RNA interference in Drosophila and protects from RNA virus infection”, published in PNAS this November, the authors identify a new connection between both the transcriptional and small RNA mediated post-transcriptional mechanisms that respond to stress.

Screen Shot 2015-11-16 at 9.22.43 AM

RNAi efficiency is enhanced in a dFOXO-dependent manner. For full explanations, see Fig. 2 in Spellberg & Marr (2015)

Using Drosophila as a model system, the authors identify FOXO as a transcription factor that regulates important genes in the small RNA pathways in response to stress. This is the first transcription factor identified to control these genes. Despite being a hot and competitive field for over 15 years, work in small RNA pathways had yet to reveal the transcriptional regulation of the core protein machinery that are involved in small RNA biogenesis and utilization. Under stress conditions, FOXO directly binds the promoters of core small RNA pathway genes, such as Ago1, Ago2, and Dicer 2, leading to increases in their expression. As one might expect, this is followed by an increase in RNAi efficiency and post-transcriptional control of gene expression.

A known physiological role for RNAi is to fight off viral infections as part of an innate immune response. The authors find that FOXO is activated by viral infection to promote this anti-viral response. In addition, animals deleted for the FOXO gene are more susceptible to a viral infection. Theses results are consistent with the notion that virally-activated FOXO stimulates RNAi gene transcription as a mechanism to enhance viral immunity.

Finally, the work in this paper identifies integration between metabolic and stress signaling and the innate immune response, with FOXO serving the bridge. There is evidence that acute stress can confer a protective effect against infection in humans. If the identified role of FOXO is conserved, perhaps it can be utilized therapeutically.

Spellberg MJ, Marr MT, 2nd. FOXO regulates RNA interference in Drosophila and protects from RNA virus infection. Proc Natl Acad Sci U S A. 2015

Weighing in on CTE diagnosis

We noticed a new paper this week in Brain Research on chronic traumatic encephalopathy (brain damage from repeated blows to the head, which has been all over the news this year) from a Brandeis author, Madeline Engeler ’16, a Biology/HSSP double major.

We reached out to Madeline for the inside scoop, here’s what she told us:

Yes this is my paper. I am so excited it is finally published! […] This research came from the summer of 2014 when I was at the Cleveland Clinic Lerner Research Institute. I was funded through Brandeis’ World of Work fellowship program and I gained credit for my HSSP hands-on experience.
This research came about from some of us in the lab reading papers about post-mortem diagnosis of CTE in NFL players. What was intriguing was that very similar morphologies were seen in the epileptic brain resections we were studying. So we decided to depart from our epileptic brain research and stained these samples with the same antibodies as in the CTE papers. We also obtained NFL brain samples from Dr. Mckee at BU to do our own staining. Our results showed remarkably similar images from the epileptic and CTE brains. This caused us to posit that perhaps the post-mortem diagnosis of CTE is too broad because it encompasses other neurological conditions, such as epilepsy.

You can read the paper for yourself online:

Puvenna V, Engeler M, Banjara M, Brennan C, Schreiber P, Dadas A, Bahrami A, Solanki J, Bandyopadhyay A, Morris JK, Bernick C, Ghosh C, Bazarian JJ, Janigro D. Is phosphorylated tau unique to chronic traumatic encephalopathy? Phosphorylated tau in epileptic brain and chronic traumatic encephalopathy. Brain Res. 2015.

DUB inhibitors _or_ why you should you eat your broccoli

Eat your broccoli!

We’re constantly bombarded by advice on which foods to eat or not eat, but skeptics among us often find compelling evidence for a convincing mechanism of how the foods promote health hard to come by – food has many components, and there are many different cells and metabolic pathways in those cells with which those components interact.

phenethyl isothiocyanate (a component of cruciferous vegetables)

phenethyl isothiocyanate (PEITC, a component of cruciferous vegetables)

Consider broccoli. It is well established that cruciferous vegetables have wide-ranging health benefits, apparently reducing cancer risks and lowering inflammation.  One set of phytochemicals responsible for the potent anti-cancer and anti-inflammatory properties are called isothiocyanates or ‘ITCs’.  It is now four decades since the discovery of ITCs, yet a molecular understanding of what ITCs do in a cell has proven elusive.

In a paper published this month in Cancer Research, Brandeis research scientist Ann Lawson, working in Liz Hedstrom’s laboratory, together with graduate students Marcus Long (Biochem) and Rory Coffey (Mol Cell Biol) and scientists from UbiQ and from Boston College, has shown that ITCs block the action of deubiquitinating enzymes (DUBs),  including the tumorigenesis-associated enzymes USP9x and UCH37, at physiologically relevant concentrations and time scales.

DUB inhibition provides a simple, unifying explanation that can account for many of the diverse health effects of ITCs. Understanding of how ITCs work at the molecular level may, one day, lead to new drug therapies for illnesses such as cancer, chronic inflammation, and neurodegenerative diseases.

Are you ready for your broccoli now? Me, I think I’ll have some kale sprouts.

Lawson AP, Long MJ, Coffey RT, Qian Y, Weerapana E, El Oualid F, Hedstrom L. Naturally occurring isothiocyanates exert anticancer effects by inhibiting deubiquitinating enzymes. Cancer Res. 2015

Protected by Akismet
Blog with WordPress

Welcome Guest | Login (Brandeis Members Only)