Dynamics of GreB-RNA polymerase interaction

Larry Tetone, Larry Friedman, and Melissa Osborne, and collaborators from the Gelles lab (Brandeis University) and the Landick lab (University of Wisconsin-Madison) used multi-wavelength single-molecule fluorescence methods to for the first time directly observe the dynamic binding and dissociation of an accessory protein with an RNAP during active transcript elongation.

Their findings are detailed in the recent paper “Dynamics of GreB-RNA polymerase interaction.” (PNAS, published online 1/30/2017).

Read more at The Little Engine Shop blog

Mediating the early response to acute hypoxia

Neurons in the brain require a continuous supply of oxygen for normal activity. If the level of oxygen in the brain decreases—for example when a blood vessel becomes blocked—neurons begin to die, and permanent brain damage can result. A shortage of oxygen first causes sodium ion channels within the surface membrane of the neurons to open. Sodium ions then flow into the cells through these open channels to trigger a cascade of events inside the cells that ultimately results in their death.

In “SUMOylation of NaV1.2 channels mediates the early response to acute hypoxia in central neurons” (Elife), Plant et al. now reveal how oxygen deficiency, otherwise known as hypoxia, rapidly increases the flow of sodium ions into brain cells. By inducing hypoxia in neurons from rat brain, Plant et al. show that a lack of oxygen causes SUMOylation, a process whereby a series of enzymes work together to attach a Small Ubiquitin-like Modifier (or SUMO) protein, of specific sodium ion channels in under a minute. The channels linked to the SUMO protein, a subtype called Nav1.2, open more readily than unmodified channels, allowing more sodium ions to enter the neurons.

Plant et al. study granule cells of the cerebellum, the most numerous type of neuron in the human brain. Further investigation is required to determine if SUMOylation of Nav1.2 channels underlies the response of other neurons to hypoxia as well. It also remains to be discovered whether molecules that block the SUMOylation of Nav1.2 channels, or that prevent the flow of sodium ions through these channels, could reduce the number of brain cells that die in low-oxygen conditions such as stroke.

doi: 10.7554/eLife.20054.
SUMOylation of NaV1.2 channels mediates the early response to acute hypoxia in central neurons
Leigh D Plant, Jeremy D Marks, Steve AN Goldstein
eLife 2016;5:e20054

Research Funding For Undergrads: MRSEC Summer Materials Undergraduate Research Fellowships

The Division of Science wishes to announce that, in 2017, we will offer seven MRSEC Summer  Materials Undergraduate Research Fellowships (SMURF) for Brandeis students doing undergraduate research, sponsored by the Brandeis Materials Research Science and Engineering Center.

The fellowship winners will receive $5,000 stipends (housing support is not included) to engage in an intensive and rewarding research and development program that consists of full-time research in a MRSEC lab, weekly activities (~1-2 hours/week) organized by the MRSEC Director of Education, and participation in SciFest VII on Aug 3, 2017.

The due date for applications is February 27, 2017, at 6:00 PM EST.

To apply, the application form is online and part of the Unified Application: https://goo.gl/9LcSpG (Brandeis login required).


Students are eligible if they will be rising Brandeis sophomores, juniors, or seniors in Summer 2017 (classes of ’18, ’19, and ’20). No prior lab experience is required. A commitment from a Brandeis MRSEC member to serve as your mentor in Summer 2017 is required though. The MRSEC faculty list is: http://www.brandeis.edu/mrsec/people/index.html

Conflicting Commitments
SMURF recipients are expected to be available to do full time laboratory research between May 30 – August 4, 2017. During that period, SMURF students are not allowed to take summer courses, work another job or participate in extensive volunteer/shadowing experiences in which they commit to being out of the lab for a significant amount of time during the summer. Additionally, students should not be paid for doing lab research during this period from other funding sources.

Application Resources
Interested students should apply online (Brandeis login required). Questions that are not answered in the online FAQ may be addressed to Steven Karel <divsci at brandeis.edu>.

SciFest VI recap and stats

photo credit: Mike Lovett

photo credit: Mike Lovett

The Brandeis University Division of Science held its annual undergraduate research poster session SciFest VI on August 4, 2016, as a record number of student researchers presented posters with the results of their summer’s (or last year’s) worth of independent research. We had a great audience of grad students, postdocs, faculty, proud parents, and senior administrators.

More pictures and abstract books are available at the SciFest site.

SciFest VI by numbers

Celebrating Chris Miller at Christravaganza Millerpalooza

Since its founding at Brandeis in 1976, Chris Miller’s lab has been home to 25 graduate students and 35 postdocs. Many of them, together with friends and colleagues from around the world, came together on July 8 and 9 for a two day symposium celebrating Chris’ 70th birthday.

For four decades Miller has used electrophysiological methods to study single ion channels. Ion channels are proteins that open and close, selectively allowing specific ions to cross cell membranes, for example to drive muscle contraction or nerve cell signaling. The selective transport of ions across membranes is a fundamental feature of cells.

Miller began studying channels selective for potassium ions, and then in 1978 discovered a chloride selective channel, from Torpedo, the first member of the important CLC chloride channels whose malfunction is implicated in a variety of diseases. (Its name comes from the electric ray Torpedo californica from which the channel was first isolated.) Chris discovered the unusual “double barreled” architecture of the CLC family of ion channels. The lab continues to work on related proteins, including Cl/H+ exchange-transporters.

Miller’s lab has followed clues in recent years to find additional novel channels to study, including bacterial proteins involved in acid resistance and most recently channels that are selective for fluoride. Chris has been a Howard Hughes Medical Institute investigator since 1989 and in 2007 he was elected to the US National Academy of Sciences.

Rod MacKinnon ’78 was Chris’ very first student while he was an undergraduate at Brandeis. After medical school, Rod came back to Chris’ lab as a postdoc, and together they investigated the mechanism of calcium activated potassium ion channels. Later, at Rockefeller University, Rod used high resolution x-ray diffraction to determine the complete molecular structure of the proteins that form the channel. For this he was awarded the Nobel Prize for Chemistry in 2003. The structure confirmed a cartoon picture of how the potassium channel works that Chris, with postdoctoral fellows MacKinnon and Jaques Neyton, had developed ten years earlier.

Chris’ wife, Brandeis Professor of Russian and Comparative Literature Robin Feuer Miller, and their three daughters were in attendance. Lulu Miller (who is also co-host of the NPR program Invisibilia) introduced her father for the final talk of the symposium.

The editors thank Dan Oprian for help with this article. The photographs were taken by Heratch Ekmekjian.

Sprout Award Winners Announced

The recipients of the 6th annual Sprout Awards have been announced. There will be eight teams from labs in the Biology, Biochemistry, and Chemistry departments sharing the $100,000 in funding in FY 2017. The Sprout program’s grant pool was doubled this year in order to expand the support for the promising innovation and research that is happening here at Brandeis University.  The Sprout program, created 6 years with the intent to encourage entrepreneurial activity, is sponsored by the Office of the Provost and the Hassenfeld Family Innovation Center. It is administered by the university’s Office of Technology Licensing

(read more at Brandeis Now).


Protected by Akismet
Blog with WordPress

Welcome Guest | Login (Brandeis Members Only)