4th Annual Sprout Grants – Call for applications

Bring your research and entrepreneurial ambitions to life!

The Brandeis University Virtual Incubator invites member of the Brandeis Community (undergrads, grad students, postdoctoral fellows, faculty, staff) to submit an application for a “Sprout Grant”. These grants are intended to stimulate entrepreneurship on campus and help researchers launch their ideas and inventions from Brandeis to the marketplace.

This spring we will be awarding $50,000 to be shared amongst the most promising proposals.

Come get your questions about the Sprout grant answered at one of our upcoming information sessions.

Info sessions:

Tuesday      February 18th    1pm – 2pm

Tuesday      February 25th    10am – 11am

Thursday     February 27th    11am – noon

Tuesday      March 4th          11am – noon

All information sessions will be held in the Shapiro science center 1st floor library, room 1-03 (the glass walled room near the elevators).

Deadlines: Preliminary applications are due on Friday, March 7th

Benefits of participation:

  • Teams that are selected to submit full applications will be given assistance in further developing their ideas into an effective business pitch.
  • Sprout grant winners will be connected with an experienced mentor, and given further assistance in getting their ideas to market by the Office of Technology Licensing.
  • Previous winners have come from many departments: Neuroscience, Biology, Biochemistry, Physics and Computer Science. Some of the funded technologies have resulted in patent applications and are moving towards commercial development. Read more about previous winners from your department here: Sprout winners 2011, Sprout winners 2012, Sprout winners 2013.

For more information go to our website (http://www.brandeis.edu/otl/grants/index.html) or contact Melissa Blackman at melblack@brandeis.edu.

Tenure-track faculty position in Biochemistry

The Department of Biochemistry at Brandeis University invites applications for a tenure-track faculty position, to begin Fall 2014. We are searching for a creative scientist who will establish an independent research program and who in addition will maintain a strong interest in teaching Biochemistry at the undergraduate and graduate levels. The research program should address fundamental questions of biological, biochemical, or biophysical mechanism. Brandeis University offers the rare combination of a vigorous research institution in a liberal-arts college setting. The suburban campus is located 20 minutes from Boston and Cambridge and is part of the vibrant community of academic and biotechnology centers in the Boston area. The application should include a cover letter, curriculum vitae, statement of research accomplishments and future plans, copies of relevant publications, and three letters of reference. Applications will be accepted only through AcademicJobsOnline at https://academicjobsonline.org/ajo/jobs/3366. Additional inquiries may be directed to Dan Oprian, Professor of Biochemistry (oprian@brandeis.edu). First consideration will be given to applications received by December 1, 2013.

Brandeis University is an Equal Opportunity Employer, committed to building a culturally diverse intellectual community. We particularly welcome applications from women and minority candidates.

How bacteria resist fluoride

Fluoride anion is everywhere.  Released into water through the natural weathering of rocks, it’s present to the tune of 5 mM in toothpaste, 30 μM in Cape Cod bay, and 17 μM in Massell pond at Brandeis.

Fluoride levels in our environment (graph).001

Fluoride in the environment, measurements by Ashley Brammer (Miller lab)

Since F is ancient, ubiquitous and toxic to microbes, it’s not surprising that bacteria have evolved defenses to expel it from their cytoplasm.   In an article published in eLife on August 27, 2013, Randy Stockbridge, Janice Robertson, and Luci Partensky from Chris Miller’s lab describe one of these microbial defenses, a fluoride channel called Fluc.  The channel provides a pathway for F to exit the cell across the membrane at a rate of 107 ions per second, while rigorously excluding Cl in order to avoid catastrophic membrane depolarization. The world-record 10,000-fold selectivity isn’t the only remarkable aspect of Fluc, however. The Fluc channel is built on an antiparallel dimer scaffold, with one of the subunits facing the exterior of the cell, and the other facing the interior. Only one other modern-day membrane protein is known to dimerize like this, but the arrangement recalls the inverted structural repeats that are a common, important motif for membrane transporters. Inverted repeats are the product of an antiparallel dimer, like Fluc, that duplicated and fused eons ago.  The sequences drifted over time until the duplication was undetectable by sequence similarity, and the plethora of membrane transport proteins built on this plan was only discovered when the 3-D structures were solved. The Fluc family provides the opportunity to study microorganism resistance to an ancient xenobiotic, as well as membrane protein architecture from an evolutionary origin.

For more, you should read the paper:

Stockbridge RB, Robertson JL, Kolmakova-Partensky L, Miller C. A family of fluoride-specific ion channels with dual-topology architecture. eLife. 2013;2(0):e01084. PMCID: 3755343.

PS: If you’re wondering about the tea on the bar graph, tea plants accumulate F in their leaves.  Cheap teas, made from older tea leaves, actually carry a lot of F, and if you drink a couple quarts of lousy tea a day, you can give yourself skeletal fluorosis.

Sprout Grant Winners Announced

Winners of the 2013 Sprout Grant competition held by the Brandeis Office of Technology and Licensing have been announced. Sprout grants support research that is “novel, patentable and [has] commercial potential“, and encourage students to think about new and different ways to apply their basic science for practical good. Each team applying for a grant must be led by a Brandeis student or postdoc (noted in asterisks below), who were responsible for presenting their proposals to the review panel.

Teams that received funding.

  • Marcus Long (*), Ann Lawson, Lior Rozhansky ’15, and Liz Hedstrom: $20,000 to develop novel inhibitors of deubiquitinating enzymes;
  • Michael Heymann (*), Achini Opathalage, Dongshin Kim, and Seth Fraden: $5,500 for its development of CrystalChip;
  • Michael Spellberg (*), Calla Olson, Marissa Donovan, and Mike Marr: $10,000 to develop a tool to purify Calmodulin-tagged recombinant proteins;
  • Julian Eskin (*) and Bruce Goode: $2,000 for work on a rapid and efficient kit to purify actin;
  • Eugene Goncharov ’13 (*), Yuval Galor ’15,  and Alex Bardasu ’15: $2,500 towards development of their iPhone app LineSaver, which collects data on local hotspots and gives users an estimated wait-time for restaurants, clubs and tourist attractions.

You can read more at BrandeisNOW

Timothy Street to join Biochemistry faculty

The Biochemistry Department is delighted to announce that Timothy Street has accepted a position as Assistant Professor of Biochemistry. He will arrive at Brandeis in early September.

Timo received his undergraduate degree in Physics from UC  Berkeley and his PhD in Biophysics from Johns Hopkins. For the past few years he has been carrying out postdoctoral research at UCSF in the lab of David Agard.  He works at the nexus of structural biology and the physical chemistry of protein folding, focusing on a perplexing, challenging class of “molecular chaperones,” proteins that help other proteins fold properly into their native conformations.  One of the great puzzles in this biologically crucial field is how these chaperones recognize and engage with the proteins emerging from the ribosome that are improperly folded and need their energy-dependent attention.  Moreover, this process is intimately related to the unfolded protein response, a kind of cellular panic-button.  To attack these kinds of questions, Timo applies a wide range of structural and kinetics methods and in his postdoctoral work has shown how these may be cleverly integrated to picture the mechanisms of highly dynamic chaperone proteins. He is beginning new projects to develop sensors that will allow him to dissect the actions of chaperones in live cells, to complement the mechanistic pictures emerging from his in vitro studies in purified, defined systems.

A facilitated diffusion confusion dissolution

To udirectbindfd1tilize the information contained within a cell’s genes, the enzyme RNA polymerase must find the beginning of each gene (the promoter).  Finding the beginning is a prodigious task:  RNAP must start at a particular base pair of DNA, but the cell contains millions of base pairs to choose from.  It has been proposed that gene-finding challenge is aided by a process termed ‘facilitated diffusion (FD).  In FD, RNA polymerase first binds to a random position on DNA and then slides along the DNA like a bead on a string until it encounters the target DNA sequence.

single-mol-testIn a recently published study in PNAS (1), biophysicists Larry Friedman and Jeffrey Mumm worked with Prof. Jeff Gelles in the Brandeis Biochemistry department to test key predictions of the FD model.  They used a novel light microscope that Friedman and colleagues invented and built at Brandeis, a microscope that can directly observe the binding of an individual RNA polymerase to a single DNA.  The scientists studied the σ54 RNA polymerase holoenzyme, an RNA polymerase found in most species of bacteria.  Surprisingly, none of the three predictions of the FD model that the experiments tested were found to be valid, demonstrating that target finding by the polymerase is not accelerated by sliding along DNA.  Friedman and colleagues instead propose that RNA polymerases are present in such large numbers that they can diffuse through the cell and efficiently bind to their target sites directly.  The absence of FD may explain how other proteins can bind to positions on the DNA that flank gene start sites and yet not interfere with RNA polymerase finding the gene.

Is this the end of the story? Not likely, given previous publications suggesting FD plays a role for some other DNA binding proteins. Using single-molecule techniques like those developed in the Gelles lab, scientists in next few years should give us a better idea if FD is very rare or very common. [editor: as a chemical engineer, I’m sad to see FD not have a role — it seemed like such a nice theory…]

Friedman LJ, Mumm JP, Gelles J. RNA polymerase approaches its promoter without long-range sliding along DNA.  Proc Natl Acad Sci U S A. 2013 May 29. [Epub ahead of print]



Summer Seminars Start on the Sixth

Science is a year-round endeavor, so science seminars will continue over the seminar, though the venues and times may shift.

D-Day for summer seminars this year is June 6, when the Biochemistry & Biophysics Summer Pizza Talks series kicks off with Dr Markus Grütter of the University of Zurich. Grütter will give a special summer on his recent breakthrough-structure of the first heterodimeric ABC transporter. This structure is important because the ABC transporter is a homologue of the CFTR channel (disrupted in cystic fibrosis, one of the most common human genetic diseases). The talk will be in Gerstenzang 121 at Noon on Thursday, June 6.

The Life Sciences Summer Research Seminar Series will start on Monday, June 24, with a talk by distinguished alumna Leslie Meltzer ’03, who has returned to the Boston area as Associate Director of U.S. Medical Affairs at Biogen IDEC, having paid a visit to the other coast to get a Ph.D. in Neuroscience at Stanford in 2008, working with Karl Deisseroth. The Life Sciences Summer Research Seminar Series is organized by the Brandeis University Postdoctoral Association and will be held on Mondays at noon in Gerstenzang 121.

The Genetics Training Grant hosts a panel discussion and lunch focused on careers outside academia

This past Monday, April 29th, students and post-docs, eager to learn more about careers outside of academia, had the opportunity to hear from, and question, panelist who have successfully harnessed their PhD experience to excel in non-academic careers. The event, hosted by the Genetics Training Grant, brought together panelists from several different fields, including scientific publishing, pharmaceutical research, consulting, and intellectual property law. The panelists were Priya Budde, Reviews Editor, The Journal of Cell Biology; Sadanand Vodala, Research Scientist, ARIAD Pharmaceuticals; Derek Buhl, Principal Scientist, Pfizer Neuroscience; Peter Bak, Consultant, Back Bay Life Science Advisors; and John Garvey, Partner, K&L Gates LLP. Each panelist spoke about their background in academia, how they made the transition to their current position, and fielded numerous questions from the audience both during the panel and at the networking lunch that followed.

The panelists gave the audience a sense of what their specific careers entail, and how skills they had acquired during their PhDs were highly relevant to their current work. Some of the transferable skills mentioned included critical thinking and the ability to quickly synthesize information and distill what is most important and interesting about a given scientific finding. These skills enabled them to be highly effective in their jobs, whether efficiently evaluating scientific manuscripts as an editor, or determining the crux of a client’s research as a consultant or intellectual property lawyer.

Current jobs for recent Brandeis Life Science PhDs (graduates 2002 and beyond, n=200)

Current jobs for recent Brandeis Life Science PhDs (Neuro, Mol Cell Biol, Biochem, Biophys graduates, 2002 and beyond, n=200)

Having completed their transition from academia to the business world, panelists were able to highlight some of key cultural and practical differences associated with working in a profit-driven industry. While Derek described his lab at Pfizer as largely mimicking an academic environment (minus the need to perpetually write grants), he and other panelists noted that, unlike academia, business evaluations are based almost exclusively on having achieved specific pre-determined goals. On the upside, for those who exceed expectations in business, there are lots of opportunities to move up the ladder. Other differences that panelists encountered in their non-academic professions included firmer deadlines, higher dressing standards, and less flexible hours.

While the majority of the discussion was specific to the panelists’ career paths, much of the advice applied to career searches in general. The importance of good networking was emphasized. Job seekers were encouraged to make the most of their networks – and their network’s network as well. Each panelist explained how he or she had acquired their job through a combination of effective networking, being proactive, and in some cases, luck. Panelists were quick to point out, though, that time and effort invested were positively correlated with “luck.”

Panelists stressed that effective networking required quickly following through with contacts, and being prepared to impress key contacts with excellent questions that demonstrate your research on a given company. They encouraged the audience to be proactive, and if needed persistent, in reaching out to people whose work they find interesting. Several panelists also emphasized the benefits of acquiring job-related experience. They noted this was a good way to both boost your resume and get a better sense of whether a given profession is the right fit for you. For example, John Garvey recommended joining a consulting or biotech club, and/or taking a business class. Getting involved in job-related activities is also excellent ways to establish good contacts for networking.

Overall the panelist presented several attractive alternatives to a traditional academic career. By carefully analyzing his or her personality, strengths, and working style, each of them had found a rewarding career that effectively utilized their scientific background/training. Priya, the editor, described how she enjoyed being able to see where scientific fields are going and staying up to date with the latest scientific breakthroughs. Derek, the pharmaceutical researcher, explained how it was gratifying for him to be working directly to develop drugs that could benefit people. John, the lawyer, explained how his work solving business problems was important because it helped provide pharmaceutical companies with the financial resources to bring new life-saving drugs to market. The general take-home message from all of the panelists was that, using the right career strategies, one can effectively use one’s PhD as a launching point to successfully pursue many different avenues outside of academia. Those interested in getting a better sense of what career might be a good fit for them are encouraged to visit http://myidp.sciencecareers.org and fill out the survey.

What do Brandeis life science PhD students go on to do?

Protected by Akismet
Blog with WordPress

Welcome Guest | Login (Brandeis Members Only)