Brandeis IGERT Summer Institute Scheduled for June 25-28

The Brandeis IGERT program in “Geometry and Dynamics” is holding its Summer Institute from June 25-28. This is a series of lectures aimed at graduate students on the mathematical & theoretical side of the sciences, on a broad spectrum of topics — of course, postdocs, faculty, and sufficiently advanced undergraduates should enjoy these as well.

Once again we have an excellent list of speakers from inside and outside of Brandeis, on subjects including quantum computing, blockchain technology, origami, and the carbon cycle and mass extinction.  A full schedule is available. All are welcome and coffee and lunch will be provided: please RSVP here or by selecting the button at the bottom of the schedule page, so that we have an accurate headcount.

We hope to see you there!

SPROUT Awards Information Sessions to be held Jan. 24 and Feb. 1

SPROUT logoThe SPROUT Awards are back! If you are interested in the SPROUT program, which offers funding for bench research, the Office of Technology Licensing is hosting Information Sessions for you to learn more on how to apply. Get your questions answered by the program’s administrators. There will be two separate sessions for your convenience: January 24th, 3-4 PM at Carl J. Shapiro Science Center Library and February 1st, 3-4 PM in Volen 201. Light refreshments will be served.

New this year, SPROUT winners may also be eligible for up to an additional $3,000 of I-Corps funding from the National Science Foundation. This extra funding is specifically earmarked for teams to conduct early customer discovery and validation of their technology. Those that go through the Brandeis I-Corps program then become eligible to apply to the National I-Corps program which provides grants up to $50,000.

In the past, successful SPROUT applications have come from all departments in the sciences including Biology, Biochemistry, Physics, and Chemistry. Past candidates have proposed projects ranging from early-stage research and development to patent-ready projects. Many undergraduates, graduates, staff and faculty have all pitched various projects from a New Strategy to Treat Chronic Infections (Hedstrom Lab) to Development of a New Crystal Screening Chip (Fraden Lab) to a panel of outside judges in the hopes of receiving funding.  Read more about SPROUT and learn about past projects.

Waltham Teachers Meet with Brandeis Scientists

Brandeis scientists & Waltham teachers

On Tuesday, November 7th, 32 science teachers from Waltham Public Middle and High Schools visited the Brandeis science labs as part of the Third Annual Brandeis Scientists in the Classroom Workshop. The workshop is designed to be an opportunity to connect middle and high school science teachers with Brandeis scientists. The teachers were grouped and matched with 14 Brandeis graduate students, postdocs and faculty who shared their Brandeis science research directly with the teachers to help them understand what we do, so they can better integrate science into their classroom lessons.

This event was an extension of an ongoing partnership between Brandeis and Waltham High School and was sponsored by the Brandeis MRSEC. The Waltham school district has a high percentage of students from backgrounds underrepresented in the sciences. Brandeis offers several on-going programs with Waltham teachers and students in an effort to broaden their participation in STEM.

James Collins to receive the 2017 Gabbay Award on Oct. 18

James Collins

On Wednesday, October 18, 2017, the 2017 Jacob and Louise Gabbay Award in Biotechnology and Medicine will be given to James J. Collins from MIT. Professor Collins will be delivering his lecture entitled Synthetic Biology: Life Redesigned at 4:00pm at Brandeis in Gerstenzang 121.

Professor Collins is receiving the award “for his inventive work in synthetic biology that created a new area of research, enabling multiple biomedical applications and launching a new sector of the biotechnology industry”. He is the Termeer Professor of Medical Engineering and Science and Professor of Biological Engineering at MIT, also Core Founding Faculty at the Wyss Institute (Harvard University) and an Institute Member of the Broad Institute.

The Gabbay Award was created in 1998 by the Jacob and Louise Gabbay Foundation in order to recognize scientists working in academia, medicine or industry for their outstanding achievements developing scientific content and significant results in the biomedical sciences.


CaMKII: some basics to remember

The theme of Thursday’s Volen Center for Complex Systems annual retreat will be Breakthroughs in understanding the role of CaMKII in synaptic function and memory and honors the pioneering work of John Lisman. To help bring non-experts up to speed, we asked Neuroscience Ph.D. students Stephen D. Alkins and Johanna G. Flyer-Adams from the Griffith lab at Brandeis for a quick primer on CaMKII.

What’s a protein kinase? 

Protein kinases are enzymes that act by adding phosphate groups to other proteins – a process called phosphorylation. Phosphorylation of a protein usually initiates a cascade of downstream effects such as changes in the protein’s 3D shape,  changes in its interactions with other proteins, changes in its activity and changes in its localization. In causing these types of changes, kinases facilitate some of the most essential cellular and molecular processes required for survival and proper functionality.

Aren’t there lots of protein kinases? What makes CaMKII special? 

Among the roughly 500+ genes in the human genome encoding protein kinases, a kinase known as calcium (Ca2+)/calmodulin-dependent protein kinase II (CaMKII) phosphorylates serine or threonine residues in a broad array of target proteins.  Though found in many different tissues (skeletal muscle, cardiac muscle, spleen, etc.), there is a lot of CaMKII in the brain– about 1% of total forebrain protein and 2% of total hippocampal protein (in rats). Previous research, including pivotal contributions from the Lisman Lab at Brandeis University working in mammalian brain, has identified CaMKII as a cellular and molecular correlate of learning and memory through its multiple roles governing normal neuronal structure, synaptic strength, plasticity, and homeostasis. The Griffith Lab has been instrumental in demonstrating that these roles of the kinase are conserved in invertebrates.

Why do we think CaMKII might play a role in memory?

a) Location!

As previously mentioned, CaMKII accounts for up to 2% of all proteins in memory-important brain regions like the hippocampus. It’s also highly abundant at neuronal synapses, where neurons communicate with each other.

b) Function!

Memory is thought to require a process called long term potentiation (LTP) where two neurons, in response to environmental changes, will change the strength of the synaptic connections by which they communicate with each other—these changes will last even after the environmental input has disappeared. We know that CaMKII is required for LTP. We also know that the increases in neuronal calcium levels that accompany neuronal activation and cause LTP also allow CaMKII to phosphorylate itself. This autophosphorylation of CaMKII changes its kinase activity so that CaMKII can stay active well past the window of neuronal activation, essentially ‘storing’ the memory of previous neuronal activity—much like LTP!

c) Structure!

Ultimately, the issue with ‘molecular memory’ is that all proteins degrade over time, causing one to ask how we can remember things for so long when the original proteins that stored that memory no longer exist. CaMKII is such an exciting candidate for molecular memory because it is mostly found as a dodecameric holoenzyme—this means that CaMKII likes to exist as a big assembly of twelve identical CaMKII subunits. However, each CaMKII subunit retains its kinase activity even when all twelve are assembled. What’s interesting is that the autophosphorylation and activation of one CaMKII subunit (which happens when neurons are activated and intracellular calcium levels rise) actually makes it easier for the other CaMKII subunits in the twelve-unit holoenzyme to become autophosphorylated and activated. This means that maybe when an activated subunit is old and get degraded, another new CaMKII subunit could take its place among the twelve-unit holoenzyme—and become activated just like the old subunit, allowing for the ‘molecular memory’ to last beyond when proteins degrade!

CaMKII phosphorylation and activationCaMKII in more detail…

Calcium binds to the small protein calmodulin and forms (Ca2+/CaM), which acts as a ‘second messenger’ that increases in concentration when neurons are activated. CaMKII relies on calcium/calmodulin (Ca2+/CaM) binding to activate an individual domain containing a regulatory segment.  In conditions of low calcium, elements within the CaMKII regulatory segment will have less affinity for (Ca2+/CaM) binding, keeping CaMKII in an autoinhibited state.  In conditions of high calcium, (Ca2+/CaM) binding initiates phosphorylation at three threonine residue sites, including Thr286 which prevents rebinding of the regulatory segment, thus keeping CaMKII constitutively active even when calcium levels fall.  In this activated state CaMKII can autophosphorylate inactivated intra-kinase domains, and will undergo subunit exchange with neighboring inactivated CaMKII holoenzymes. Furthermore, mutation of CaMKII residues or binding sites in target proteins, such as postsynaptic glutamate (AMPA) receptors, disrupts establishment of long-term potentiation (LTP) in neurons.  Together, CaMKII’s role as molecular switch that bidirectionally, and autonomously regulates activity in neurons has earned it the illustrious title of a “memory molecule.”

What amino-acid manipulations might I hear about?

a) T286A:

Changing a threonine in a phosphorylation site to an alanine prevents phosphorylation at that site. Blocking Thr286 phosphorylation with a T286A mutation prevents CaMKII generation of autonomous activity that disrupts neuronal activity and results in learning deficits.

b) T286D:

Changing a threonine to an aspartate puts a negative charge at the site, often making it act like it’s always phosphorylated. In the case of CaMKII, a T286D mutation renders the kinase constitutively active, which can interrupt normal LTP induction and normal memory storage and acquisition.

To learn more:

Judith Tsipis Steps Down as Director of Genetic Counseling Program

Tsipis dinner

After 25 years at the helm of the Brandeis Genetic Counseling program, Judith Tsipis has handed over the leadership reins to Gretchen Schneider.

On June 3rd, close to 100 people gathered in the Levin Ballroom at Brandeis to honor and celebrate Judith’s illustrious career as a pioneer in the field of training genetic counselors. Attendees included over 40 alumni, former and present faculty members, family and close friends.

Highlights and memories were shared by: Beth Rosen-Sheidley, an alum from the first graduating class in 1994; Kathryn Spitzer Kim, the first Assistant Director from the Program; Gretchen Schneider; Judith’s son Yanni and husband, Kosta; and two additional alumni, Christa Haun and Jason Carmichael.

Judith created the master’s program in response to her own family’s experience with Canavan disease, a recessive degenerative disorder that causes progressive damage to nerve cells in the brain. Brandeis admitted its first class in 1992 and is proud to have over 200 alumni.

Judith will continue to be involved with the program in various capacities: coordinating journal club, serving as a thesis advisor and member of the Advisory Board.




Protected by Akismet
Blog with WordPress

Welcome Guest | Login (Brandeis Members Only)