Gregory Widberg named State Command Sergeant Major for the Massachusetts National Guard

Greg Widberg, Senior Mechanical Engineer in Physics, has been selected to be the 8th State Command Sergeant Major for the Massachusetts National Guard. Greg, who also performs repair work in the Division of Science, will be the senior enlisted advisor to Gary W. Keefe, Major General and The Adjutant General for the Massachusetts National Guard.

Roland Maher, Operations Manager for the Physics Department, said, As Gregory Widberg’s supervisor, I want to congratulate Greg on this opportunity with the Massachusetts National Guard.  All of us who know and respect Greg are proud of his accomplishments and wish him the all best with this wonderful opportunity. I am very sorry that we will be without Greg’s services and look forward to his return upon completion of his service to the Massachusetts National Guard.

Congratulations to Greg on his achievement!

Sebastian Kadener Returns to Brandeis as Associate Professor

Sebastian Kadener

From 2002 to 2008, Sebastian Kadener was a postdoc working in the Michael Rosbash laboratory. He is returning to Brandeis as an Associate Professor of Biology. Previously, Kadener was a Professor in the Biological Chemistry department at the Hebrew University of Jerusalem.

The Kadener laboratory studies how molecular processes in the brain determines behavior with a special emphasis on RNA metabolism. Additionally, they study the role of circular RNAs (circRNAs) at the molecular and neural levels as well as the mechanisms underlying circadian clocks.

Kadener’s paper, “Translation of CircRNAs”, appeared in Molecular Cell in April 2017. It was reviewed in Nature Reviews Genetics and Science Daily.

Bjoern Penning is New Assistant Professor of Physics

Bjoern PenningBjoern Penning has joined the Physics department as a new Assistant Professor. He researches dark matter (DM) and has performed direct DM searches at the LUX-Zeplin (LZ) experiment and collider DM searches with CMS and ATLAS.

At Brandeis, he is a member of the High-Energy Physics Group. He will focus on direct dark matter searches with LZ and phenomenological dark matter research.

Penning received his Ph.D. from the University of Freiburg. Previous to his arrival at Brandeis, Penning was a Lecturer in Experimental Particle Physics at the University of Bristol.

Penning will teach Particle Physics (PHYS 107b) during the Fall 2017 semester.

Marcelle Soares-Santos Joins the Physics Department

Marcelle Soares-Santos

Marcelle Soares-Santos is joining Brandeis as an Assistant Professor in the Physics department starting in September 2017. Soares-Santos will continue her research into the nature of the accelerated expansion of the Universe.  She is also a member of the Dark Energy Survey (DES) Collaboration and the Large Synoptic Survey Telescope Dark Energy Science Collaboration (LSST/DESC).

Nature recently profiled Marcelle in “Turning point: Galactic groundbreaker. In the article, she discusses her research, career trajectory and future plans.

Judith Tsipis Steps Down as Director of Genetic Counseling Program

Tsipis dinner

After 25 years at the helm of the Brandeis Genetic Counseling program, Judith Tsipis has handed over the leadership reins to Gretchen Schneider.

On June 3rd, close to 100 people gathered in the Levin Ballroom at Brandeis to honor and celebrate Judith’s illustrious career as a pioneer in the field of training genetic counselors. Attendees included over 40 alumni, former and present faculty members, family and close friends.

Highlights and memories were shared by: Beth Rosen-Sheidley, an alum from the first graduating class in 1994; Kathryn Spitzer Kim, the first Assistant Director from the Program; Gretchen Schneider; Judith’s son Yanni and husband, Kosta; and two additional alumni, Christa Haun and Jason Carmichael.

Judith created the master’s program in response to her own family’s experience with Canavan disease, a recessive degenerative disorder that causes progressive damage to nerve cells in the brain. Brandeis admitted its first class in 1992 and is proud to have over 200 alumni.

Judith will continue to be involved with the program in various capacities: coordinating journal club, serving as a thesis advisor and member of the Advisory Board.

 

 

 

Garrity lab finds moisture-sensing genes in mosquitoes

Summary figure for Garrity lab paperby Zachary Knecht, PhD candidate

As the solvent of living cells, water is critical for all life on earth.  This makes monitoring how environmental conditions impact evaporation and subsequently sensing and locating water sources important for animal survival. This is particularly critical for insects, whose small body size makes them highly susceptible to dehydration. In addition, moisture sensing, or hygrosensation, is also important for the spread of insect-born disease. Mosquitoes that spread malaria or viruses like dengue and Zika, not only need to locate bodies of standing water in which to lay eggs, but also home in on the moisture that emanates from our bodies when searching for a blood meal. This dual role for hygrosensing in mosquito biology makes their hygrosensory machinery a promising target for pest control strategies. Until now though, the genes and molecules that function in insect hygrosensation have been completely unknown.

In a pair of recent papers in the journal eLife, researchers in the Garrity Lab at Brandeis University, in collaboration with colleagues at the University of Lausanne in Switzerland, have uncovered the cellular and molecular mechanisms that underlie insect hygrosensation using the fruit fly Drosophila melanogaster. Like mosquitoes, fruit flies detect humidity through specialized, innervated hair-like structures located on their antennae called sensilla. Each hygrosensing sensilla contains one cell that responds to increasing humidity (a moist cell), and one that responds to decreasing humidity (a dry cell).  These papers demonstrate that the balance of activity between dry and moist cells allows the insect to seek out or avoid particular humidity levels, a preference which changes depending on how hydrated or dehydrated the fly is.

To identify the molecules involved in sensing moisture, the researchers looked for mutant flies unable to distinguish between humid and dry air. They found that animals with mutations in four different genes disrupted the behavior. Strikingly, each of these genes encoded a different member of the same family of sensory receptors, the so-called Ionotropic Receptors or IRs.  Although IRs are found only in invertebrates, they belong to the same family as the ionotropic Glutamate Receptors, which lie at the heart of communication between nerve cells in the animal brain, including the human brain.  IRs differ from these relatives in that instead of sensing signals sent by neurons, they detect signals coming from the environment.  IRs are best known to act as chemical receptors, but the group found that a subset of IRs act instead to sense humidity. The researchers found two broadly expressed IRs, Ir25a and Ir93a, were required by both the dry cells and moist cells while the other two IRs, Ir40a and Ir68a, were specifically required by the dry and the moist cells, respectively. This suggests that Ir25a and Ir93a contribute to the formation of both moist and dry receptors, while Ir40a and Ir68a provide the dry- and moist-specific subunits to the receptor. Consistent with this view, the loss of either Ir68a or Ir40a alone only partially reduces the animal’s ability to sense humidity, but animals with mutations in Ir25a, Ir93a or both Ir40a and Ir68a are completely blind to moisture.

Having identified the specific genes required for sensing moisture, the next step is to determine the precise mechanism by which humidity activates these receptors. Furthermore, these genes are conserved in mosquitoes and other disease vectors, providing a clear path to translate what’s known about fly hygrosensation into the mosquito. These papers lay the groundwork for new mosquito control strategies that aim to precisely inhibit their ability to seek out water to reproduce and to seek out hosts to bite and spread deadly pathogens.

Protected by Akismet
Blog with WordPress

Welcome Guest | Login (Brandeis Members Only)