Leading Science: Magnifying the Mind

Brandeis Magnify the Mind

Written by Zosia Busé, B.A. ’20

Joshua Trachtenberg, graduated from Brandeis in 1990 and is a leader in studying the living brain in action using advanced imaging technology. After establishing his research laboratory at UCLA, he founded a company – Neurolabware – in order to build the sophisticated custom research microscopes that are needed to perform groundbreaking work in understanding how the brain develops and how diseases and injuries interrupt its normal functioning. His company is created by scientists and for scientists, and is unique in creating high quality microscopes that are easy to use but also have the flexibility to be used in creative ways in innovative experiments, and in combination with a variety of other devices.

Brandeis University is now seeking to acquire one of these advanced microscopes that can observe fundamental processes inside the living brains of animals engaged in advanced behaviors. The reasonant scanning two-photon microscope from Neurolabware allows researchers to understand and image large networks of neurons in order to visualize which cells and networks are involved with specific memories or how these processes go awry in disease. “This approach is unparalleled. There is no other technique around that could possibly touch this,” Trachtenberg says.

Previous two-photon technologies permitted only very slow imaging, allowing scientists to take a picture about every two seconds, but the resonant two-photon technology is a major breakthrough that allows scientists to take pictures at about 30 frames per second. This speed increase is a major game changer. Not only can one observe activity in the brain at a higher speed, but it is possible to take pictures at a speed that is faster than the movement artifacts that must be accounted for, such as breathing or heart beats. Because one can see the movement, it can be corrected, allowing high resolution functional imaging of structures as small as single synaptic spines in the living brain. Further, advances in laser technology and fluorescent labels now allow scientists to see deeper into the brain than ever before, compounding the recent advantages of increased speed.

[Read more…]

Marder Lab wins the Ugly Sweater contest

 

A new feature was added to the 2018 Life Sciences Holiday Party – the Ugly Sweater Contest! Lab’s were encouraged to purchase, design, and bedazzle a sweater for their PIs to wear and show off at the party. Ballots for best sweater were cast at the event with the Marder lab submitting the winner. Eve’s sweater was decked out with crabs, lobsters, STG’s and neurons.  Congratulations!

How do batteries work?

How do batteries really work? A convincing simple yet quantitative answer to this question has remained elusive. Textbooks and on-line sources have provided only descriptions but not explanations of basic electrochemistry. All calculations in electrochemistry are based on measured voltages, not atomic or molecular properties. Made-up explanations of batteries in terms of different “electron affinities” of different metals are widely believed but easily disproved, e.g. by concentration cells using the same metal for both electrodes.

A paper in the Journal of Chemical Education by Klaus Schmidt-Rohr (Chemistry) explains how batteries store and release energy, in quite simple terms but based on quantitative data. In the classical Zn/Cu galvanic cell, it is the difference in the lattice cohesive energies of Zn and Cu metals, without and with d-electron bonding, respectively, that is released as electrical energy. Zinc is also the high-energy material in a 1.5-V alkaline household battery. In the lead–acid car battery, intriguingly the energy is stored in split water (two protons and an oxide ion). Atom transfer into or out of bulk metals or molecules plays as big a role as electron transfer in driving the processes in batteries.

How Batteries Store and Release Energy: Explaining Basic Electrochemistry, Klaus Schmidt-Rohr, Journal of Chemical Education, 2018, 95 (10), pp 1801–1810.

HMS Professor Steven Harrison to Receive 48th Rosenstiel Award

Prof. Stephen C. Harrison will receive the 48th Rosenstiel Award for Distinguished Work in Basic Medical Research on March 25, 2019. He is being honored for his studies of protein structure using X-ray crystallography.  His work has ranged from the landmark elucidation of the structure of viruses, to understanding the recognition of DNA sequences by transcription factors, to the regulation of protein kinases implicated in cancer.

Harrison is the Giovanni Armenise-Harvard Professor of Basic Medical Sciences and Director of the Center for Molecular and Cellular Dynamics at the Harvard Medical School.  He is also Head of the Laboratory of Molecular Medicine at Boston Children’s Hospital and an Investigator of the Howard Hughes Medical Institute.   He has been elected a member of the US National Academy of Sciences, the American Academy of Arts and Sciences,  the American Philosophical Society; he is a foreign member of the Royal Society and the European Molecular Biology Organization.

Dr. Harrison’s initial studies of virus structure provided an understanding of how viruses invade cells and how virus particles are assembled.  He has extended his work to reveal the structures of many viruses, including influenza, HIV, ebola and dengue.  Knowledge of these structures is guiding the development of new vaccines against these viruses.  Moreover, the methodology that he and his colleagues developed to visualize virus structure has made it possible to learn about the molecular architecture of other very large assemblies of proteins.

Harrison’s lab has also revealed the ways that proteins recognize specific DNA sequences to regulate gene expression.  More recently his lab has been exploring the complex structure of the many proteins that are assembled in the kinetochore, which anchors the centromeres of chromosomes to microtubules, to permit their proper segregation in mitosis.

“Steve Harrison has done much more than giving us astonishing pictures of proteins at the atomic level; he has used this structural information to show us how these proteins perform their precise functions,” said James E. Haber, Director of the Rosenstiel Center for Basic Medical Sciences.

The Rosenstiel Award has had a distinguished record of identifying and honoring pioneering scientists who subsequently have been honored with the Lasker and Nobel Prizes. Awards are given to scientists for recent discoveries of particular originality and importance to basic medical research.

View full list of awardees.

 

 

Spencer Bloch to speak at 2018 Eisenbud Lectures

Eisenbud 2018 Poster

The 2018 Eisenbud Lectures in Mathematics and Physics will be held from November 13-15 at Brandeis University. This years speaker is Spencer Bloch, Professor of Mathematics at the Yau Mathematical Sciences Center at Tsinghua University, and Emeritus Professor of Mathematics at the University of Chicago.

Professor Bloch is a mathematician whose work has influenced many subjects including number theory, algebraic geometry and mathematical physics. The following lectures will be informative and entertaining:

  • Tuesday, November 13 at 4pm: “Multiple Zeta Values and Mixed Tate Motives over ℤ”  (intended for a general audience) Location: Abelson 131.
  • Wednesday, November 14 at 4pm: “Motivic Γ-functions” (colloquium style lecture). Location: Brown 316.
  • Thursday, November 15 at 4pm, “Relative Completions,” Location: Goldsmith 317.

Refreshments will be served 15 minutes before each talk. There will be a reception in Abelson 333 following Tuesday’s talk.

The Eisenbud Lectures are the result of a generous donation by Leonard and Ruth-Jean Eisenbud intended for a yearly set of lectures by an eminent physicist or mathematician working close to the interface of the two subjects.

Computer Science, Biology & Chemistry have opened faculty searches

Brandeis has open searches for tenure-track faculty in three departments within the Division of Science for this fall.  We are looking forward to a busy season of intriguing seminars from candidates this winter.

  1. Assistant Professor of Computational Linguistics. Computer Science invites applications for a full-time, tenure-track assistant professor, beginning Fall 2019, in the area of Computational Linguistics including, but not limited to Statistical and Neural Machine Translation, Question Answering, Information Extraction, Text Summarization, Syntactic and Semantic Parsing, Dialogue Systems, etc.
  2. Assistant Professor(s) of Biology Biology invites applications for up to two full-time tenure-track positions at the level of Assistant Professor, beginning Fall 2019. Ideal candidates will be conducting innovative research in the broad area of cell biology using any organismal, cellular or in vitro system. Areas of emphasis include, but are not limited to, cell architecture, cell motility, cell division and morphogenesis, organelle function, intracellular trafficking, and compartmentalization.
  3. Assistant Professor of ChemistryChemistry is seeking a creative individual at the assistant professor level for a tenure-track faculty position in organic chemistry or chemical biology.  Exceptional senior candidates in all areas of chemistry will also be considered at the appropriate rank.

Brandeis University is an equal opportunity employer, committed to building a culturally diverse intellectual community, and strongly encourages applications from women and minorities.  Diversity in its student body, staff and faculty is important to Brandeis’ primary mission of providing a quality education.  The search committees are therefore particularly interested in candidates who, through their creative endeavors, teaching and/or service experiences, will increase Brandeis’ reputation for academic excellence and better prepare its students for a pluralistic society.

Protected by Akismet
Blog with WordPress

Welcome Guest | Login (Brandeis Members Only)