Phi Beta Kappa Elects 51 Division of Science Students

Phi_Beta_Kappa_KeyThe Brandeis chapter of Phi Beta Kappa recently elected 97 new members. Of the 97, at least 51 undergraduate students are majors in the Division of Science (Biochemistry, Biological Physics, Biology, Chemistry, Computer Science, Mathematics, Neuroscience, Physics and Psychology).

Congratulations to the following new Phi Beta Kappa members from the Division of Science:


Malia Barbra McAvoy
Yehonatan Otzar Meschede-Krasa
Juhee Park
Lior Rozhansky
Hanchen Zhao (double major with Chemistry)

Biological Physics

Abigail Rose Knecht


Ignatius Ang
Zachary Ian Fried
Jenna Leah Kahane
Ariel Jennifer Katz
Yang Li
Yixuan Liao
Alice Yuan Meng
Khang Vi Nguyen (double major with Chemistry)
Danielle Marie Quintin
Sarah Shin


Khang Vi Nguyen (double major with Biology)
Soobyung Park
Noam Isaac Saper
Hanchen Zhao (double major with Biochemistry)

Computer Science

Kenneth William Foner
Huy Quang Mai
Grady Berry Ward (double major in Mathematics)


Cameron Zhang Fen
Trevor Weiss Kafka
Linda Li
Huy Quang Mai
Stefan Stanojevic
Zhengyang Zhou
Daniel Jackson Kutner (double major in Physics)
Murielle Claire Tugendhaft
Grady Berry Ward (double major in Computer Science)


Jessica Allison Haley (double major with Psychology)
Kiera Gillian Sarill (double major with Psychology)



Wei Zhong Goh
Stefan Stanojevic
Daniel Jackson Kutner


Kyra Jordana Borenstein
Hannah Dvorah Caldwell
Nicole Danielle Cardona
Avi David Cohen
Annie Cui
Jason Michael Desimone
Emily Rose Friedman
Jonathan David Gilman
Clara Emily Gray
Cecilie Gromada
Sarah Jessica Hack-Chabot
Jessica Allison Haley (double major with Neuroscience)
Jessica Lynn Lieberman
Danielle Mizrachi
Emily April Mostow
Linda Sue Nakagawa
Talia Michelle Portal
Jenna Louise Rice
Kiera Gillian Sarill (double major with Neuroscience)
Aliza Naomi Shapiro

See full story on BrandeisNow.

Brandeis IGERT Summer Institute June 16 – June 26, 2014

The second Brandeis IGERT Summer Institute begins this Monday, June 16th in Goldsmith 300 and runs through Thursday, June 26th. This will consist of a variety of talks by faculty and students on subjects in the mathematical sciences. While this is part of the IGERT training program, aimed at graduate students working across the spectrum of the mathematical sciences, we invite the Brandeis community to attend any of the talks that catch their eye. Speakers include:

  • Chris Santangelo (U Mass Amherst)– “Shape and mechanics of origami folding”
  • Matthew Headrick — “Introduction of quantum information theory”
  • Bulbul Chakraborty and Blake Lebaron — “Applications of Statistical Mechanics to Finance”
  • Daniel Ruberman — “Introduction to Knot Theory”
  • Paul Miller — “Feedback control in neural firing”
  • Albion Lawrence — “An introduction to inflation and gravity waves”
  • Eli Putzig — TBA
  • Honi Sanders — TBA
  • Tony Ng — TBA

and a schedule can be found at  or in the Brandeis Science Seminars listings.

We will be having lunch in the Volen bridge; please bring your own and join us!

Michael Kosowsky ’14 receives NSF Graduate Research Fellowship

KosowskyMichael Kosowsky ’14, who majored in both physics and mathematics at Brandeis, has been awarded a National Science Foundation Graduate Research Fellowship in astronomy and astrophysics.  The fellowships, which are awarded based on a national competition, provide three full years of support for Ph.D. research and are highly valued by students and institutions. Kosowsky worked with Prof. David Roberts in the Physics Department on analyzing the polarization of the X-ray binary SS 433 with the purpose of figuring out the magnetic field structure of the source.  He will be pursuing a Ph.D. in physics at Harvard University starting this fall.

Other 2014 NSF Fellowship recipients from Brandeis include:

Alex Dainis  (BS ’11, Biology, Film, Television, Interactive Media), Stanford University
Abby Finkelstein (BS ’13, Neuroscience),  Arizona State University
Lamia Harper (BS ’12, Biology), NYU
Ariel Hyre  (BS ’13,  Chemistry), Boston University
Anatoly Rinberg (BS ’11, Physics, Mathematics), Stanford University
Seth Werfel  (BA ’10, Economics), Stanford University


Eisenbud Lectures in Mathematics and Physics, March 11 – 12, 2014


Cumrun Vafa

The Departments of Physics and Mathematics and Brandeis are incredibly excited to announce that this year’s Eisenbud Lectures in Mathematics and Physics will be given by the world-renowned theoretical physicist Prof. Cumrun Vafa, the Donner Professor of Science Harvard University.  Prof. Vafa is one of the leading figures in the fields of string theory and quantum gravity, and he has been on the forefront of the exchange between string theory and geometry that has revolutionized both fields over the last thirty years. He is known for his immense intuition, creativity, and depth of thinking in physics and mathematics.

The Eisenbud Lectures are the result of a bequest by Leonard and Ruth-Jean Eisenbud, and this year marks the 100th anniversary of Leonard Eisenbud’s birth.  Leonard Eisenbud was a mathematical physicist at SUNY-Stony Brook; upon his retirement he moved to the Boston area, as his son David was a member of the Mathematics faculty at Brandeis, and was given a desk here.  The bequest is for an annual lecture series by physicists and mathematicians working on the boundary between the first two fields.

The Eisenbud lectures consist of three lectures.  The first is a colloquium-style lecture meant for a broad scientific audience.  The following two lectures are more technical lectures meant for experts in the field.  The schedule is:

Lecture 1: “String Theory and the Magic of Extra Dimensions”, Tuesday, March 11 at 4PM in Abelson 131.  Tea, coffee, and refreshments will be served at 3:30 outside of the lecture hall. A reception will follow the talk.

Lecture 2: “Recent Progress in Topological Strings I”, Wednesday, March 12 at 11 AM in Abelson 333.

Lecture 3: “Recent Progress in Topological Strings II”, Wednesday March 12 at 4 PM in Abelson 229.

We hope to see you all at what promises to be a very exciting series of talks!

— Albion Lawrence, Dept. of Physics. and Bong Lian, Dept. of Mathematics

New team-taught course offered spring 2014: “Differential geometry in classical and quantum mechanics”

1) Introduction and Motivation

We would like to call attention to a new class offered this winter/spring 2014 quarter, being taught jointly by Prof. Daniel Ruberman in Mathematics and Prof. Albion Lawrence in Physics.  This is being listed jointly as Physics 202a (Quantum Field Theory) and Math 221b (Topics in Topology).  It is being team-taught under the auspices of the Brandeis Geometry and Dynamics IGERT program.

This course aims to introduce basic notions of fiber bundles and connections on them, and their application to basic physical examples in classical and quantum mechanics: especially the mechanics of deformable bodies, and Berry’s phase.  The target audience is mathematics and physics students, and mathematically inclined students in physical chemistry, neuroscience, computer science, and economics.  The essential principles here find applications to chemical and neural oscillators and control theory; there have even been suggestions that it is a useful language for describing currency trading.

The mathematics covered here typically appears in advanced courses on quantum and statistical field theory.  However, it has much broader applicability, and the instructors felt that studying more elementary physics examples better highlighted the essential mathematics and lead to a broader perspective that would better prepare students to find new and creative uses for the mathematics.  Furthermore, they allow us to teach a broader audience, as the essential physics background is straightforward and can be explained without the student needing two years of graduate-level physics courses.

This course is essentially a graduate course, but it is certainly appropriate for senior undergraduates with a solid mathematical background (math and physics majors especially).  The modern mathematical language of manifolds and vector bundles will be introduced and used throughout, but with reference to physical and geometric notions.  This will provide physics students with an appropriate vocabulary for further study, while mathematics students can try to grasp the intuition behind the formalism.  Note that the course satisfies one of the IGERT course requirements; however, we strongly encourage non-IGERT students to enroll.

The course is scheduled to take place Mondays and Wednesdays from 2-3:20pm. [Read more…]

Gessel named Berenson Professor of Mathematics

According to BrandeisNOW, Ira Gessel has been named the fourth Theodore W. and Evelyn G. Berenson Professor of Mathematics. A 2013 fellow of the American Mathematical Society, Gessel does research in the area of combinatorics, the science of counting finite structures.

“It is a great honor to be awarded the Berenson Chair,” Gessel says. “The mathematics department has been a wonderful place to teach and do research, and I look forward to continuing my work here for years to come.”

Protected by Akismet
Blog with WordPress

Welcome Guest | Login (Brandeis Members Only)