Neuroscience Faculty Members Named AAAS Fellows

Leslie Griffith & Gina Turrigiano-2017 AAAS Fellows

Leslie Griffith (left) and Gina Turrigiano (right)

Leslie Griffith and Gina Turrigiano have been named American Association for the Advancement of Science (AAAS) Fellows for 2017. This is in recognition of their contributions and scientific leadership in the field of Neuroscience.

Leslie Griffith, Nancy Lurie Marks Professor of Neuroscience and Director of the Volen Center for Complex Systems, studies sleep and memory using Drosophila melanogaster.

Gina Turrigiano is the Joseph Levitan Professor of Vision Science. Her lab studies the mechanisms of homeostatic synaptic plasticity and their effects in developing and functioning cortex.

Vice Provost for Research Edward Hackett is also a 2017 AAAS Fellow in the Section on History and Philosophy in Science.

Griffith, Turrigiano, Hackett and the other Fellows for 2017 will be recognized on Saturday, Feb. 17, 2018 at the 2018 AAAS Annual Meeting in Austin, Texas.

Read more at BrandeisNow.

John Lisman (1944-2017)

Chair of Biology Piali Sengupta wrote:

It is with great sadness that I am writing to let you know that John Lisman passed away last night. He passed away peacefully surrounded by his family. John was an influential and creative scientist and a very good friend to all of us in Biology and Neuroscience. We are glad that we had the opportunity to honor him and hear from him at the Volen Retreat last week. He will be much missed.

John’s talk at the Volen Retreat earlier this month, delivered by video conference, is available here: The critical role of CaMKII in memory storage: 6 key physiological and behavioral tests

The family has asked that in lieu of flowers people consider contributing to the John Lisman Memorial Scholarship

Update: The Memorial Service, taking place at 2 p.m. Thu Oct 26, will be live streamed. Brandeis community members can watch the live streaming in real time in Gerstenzang 121 as well as the Shapiro Science Center level 1 library. There will be a reception at the Brandeis Faculty Club at 3:30 open to the community.

We also wanted to share some tweets from past students and colleagues:

We also received this longer tribute from Michael Kahana:

I was greatly saddened to hear the news that John Lisman passed away this weekend. I spoke with him just a few weeks ago and was greatly looking forward to his upcoming visit to Penn. Although he told me of his illness, I was hoping to have a little more time with my good colleague and friend. Upon learning of his passing, I wanted to write down a few memories to share with friends and colleagues who knew John well.

I vividly recall when I first met John, at an evening gathering at his home that I attended just prior to joining the faculty at Brandeis (this may have been a precursor to the famous Boston Hippocampus meetings that John helped organize). The meeting was teaming with energy, and John welcomed me warmly, introducing me to other scientists in the room. John had recently become very interested in human memory, and as a newly minted PhD working on memory, John took me under his wings, teaching me about neurophysiology and quizzing me enthusiastically about the psychology of memory, a field that John was keen to master as quickly as possible.

John was a polymath, bursting with creative energy, and capable of seeing connections between diverse fields. Over the subsequent decade at Brandeis, John had an enormous influence on my career and research direction, introducing me to theta and gamma rhythms, and teaching me about countless topics in neurophysiology. On a typical day in the Volen Center, John would rush into my lab eager to share a new discovery or ask me a question about a study of memory that he had just learned about. He had this incredibly-infectious scientific curiosity, and he was always abundantly generous with his time, both with me and my students.

I particularly remember the early days when John was developing the LIJ (Lisman-Idiart-Jensen) model, and trying to learn as much as he could about the Sternberg task and other related phenomena in the field of human memory. Although I frequently challenged John on this front, he kept at it, continuing to refine the model together with Ole Jensen until they were able to answer many of the most serious objections. I just saw that the original paper was cited more than 1,200 times, and several of the follow up papers are well into the many hundreds of citations. This is arguably the most creative neurophysiological model of a cognitive function, and the best example of an attempt to link detailed physiological measurements to behavioral measures of human memory.

We have all lost a great friend, colleague, and mentor, and the field of neuroscience has lost one of its shining stars. I want to share my deepest sympathies with all of you who knew and loved John.

May his family be comforted among the mourners of Zion and Jerusalem.
Mike Kahana

Thomas Reese shared his thoughts:

John, your intellect and spirit lighted more than 30 summers my life at the MBL in Woods Hole.  You were a reference point for neurobiology there, holding court at your favorite table at the Kidd, at the far end of the dock.  A cherished invitation to lunch at exactly 12:00, with interesting synapse people passing though, or to hear a deluge of you new ideas about how a synapse is, or should be, put together.  Occasionally an invitation to dinner outside, behind your house with talk of many things…..joined by the delightful Natashia and other interesting people….discussing well into the night.

If Woods Hole is a little scientific Athens, you were our Socrates, lurking on Milfield. questioning in your disarming, open open way…bringing out the truth.  You were our Dogenes. searching Gardner Road for a man with the honest truth.

John, ,…John..it will seem empty there without you…you
will be very much missed..Tom Reese.     NIH

CaMKII: some basics to remember

The theme of Thursday’s Volen Center for Complex Systems annual retreat will be Breakthroughs in understanding the role of CaMKII in synaptic function and memory and honors the pioneering work of John Lisman. To help bring non-experts up to speed, we asked Neuroscience Ph.D. students Stephen D. Alkins and Johanna G. Flyer-Adams from the Griffith lab at Brandeis for a quick primer on CaMKII.

What’s a protein kinase? 

Protein kinases are enzymes that act by adding phosphate groups to other proteins – a process called phosphorylation. Phosphorylation of a protein usually initiates a cascade of downstream effects such as changes in the protein’s 3D shape,  changes in its interactions with other proteins, changes in its activity and changes in its localization. In causing these types of changes, kinases facilitate some of the most essential cellular and molecular processes required for survival and proper functionality.

Aren’t there lots of protein kinases? What makes CaMKII special? 

Among the roughly 500+ genes in the human genome encoding protein kinases, a kinase known as calcium (Ca2+)/calmodulin-dependent protein kinase II (CaMKII) phosphorylates serine or threonine residues in a broad array of target proteins.  Though found in many different tissues (skeletal muscle, cardiac muscle, spleen, etc.), there is a lot of CaMKII in the brain– about 1% of total forebrain protein and 2% of total hippocampal protein (in rats). Previous research, including pivotal contributions from the Lisman Lab at Brandeis University working in mammalian brain, has identified CaMKII as a cellular and molecular correlate of learning and memory through its multiple roles governing normal neuronal structure, synaptic strength, plasticity, and homeostasis. The Griffith Lab has been instrumental in demonstrating that these roles of the kinase are conserved in invertebrates.

Why do we think CaMKII might play a role in memory?

a) Location!

As previously mentioned, CaMKII accounts for up to 2% of all proteins in memory-important brain regions like the hippocampus. It’s also highly abundant at neuronal synapses, where neurons communicate with each other.

b) Function!

Memory is thought to require a process called long term potentiation (LTP) where two neurons, in response to environmental changes, will change the strength of the synaptic connections by which they communicate with each other—these changes will last even after the environmental input has disappeared. We know that CaMKII is required for LTP. We also know that the increases in neuronal calcium levels that accompany neuronal activation and cause LTP also allow CaMKII to phosphorylate itself. This autophosphorylation of CaMKII changes its kinase activity so that CaMKII can stay active well past the window of neuronal activation, essentially ‘storing’ the memory of previous neuronal activity—much like LTP!

c) Structure!

Ultimately, the issue with ‘molecular memory’ is that all proteins degrade over time, causing one to ask how we can remember things for so long when the original proteins that stored that memory no longer exist. CaMKII is such an exciting candidate for molecular memory because it is mostly found as a dodecameric holoenzyme—this means that CaMKII likes to exist as a big assembly of twelve identical CaMKII subunits. However, each CaMKII subunit retains its kinase activity even when all twelve are assembled. What’s interesting is that the autophosphorylation and activation of one CaMKII subunit (which happens when neurons are activated and intracellular calcium levels rise) actually makes it easier for the other CaMKII subunits in the twelve-unit holoenzyme to become autophosphorylated and activated. This means that maybe when an activated subunit is old and get degraded, another new CaMKII subunit could take its place among the twelve-unit holoenzyme—and become activated just like the old subunit, allowing for the ‘molecular memory’ to last beyond when proteins degrade!

CaMKII phosphorylation and activationCaMKII in more detail…

Calcium binds to the small protein calmodulin and forms (Ca2+/CaM), which acts as a ‘second messenger’ that increases in concentration when neurons are activated. CaMKII relies on calcium/calmodulin (Ca2+/CaM) binding to activate an individual domain containing a regulatory segment.  In conditions of low calcium, elements within the CaMKII regulatory segment will have less affinity for (Ca2+/CaM) binding, keeping CaMKII in an autoinhibited state.  In conditions of high calcium, (Ca2+/CaM) binding initiates phosphorylation at three threonine residue sites, including Thr286 which prevents rebinding of the regulatory segment, thus keeping CaMKII constitutively active even when calcium levels fall.  In this activated state CaMKII can autophosphorylate inactivated intra-kinase domains, and will undergo subunit exchange with neighboring inactivated CaMKII holoenzymes. Furthermore, mutation of CaMKII residues or binding sites in target proteins, such as postsynaptic glutamate (AMPA) receptors, disrupts establishment of long-term potentiation (LTP) in neurons.  Together, CaMKII’s role as molecular switch that bidirectionally, and autonomously regulates activity in neurons has earned it the illustrious title of a “memory molecule.”

What amino-acid manipulations might I hear about?

a) T286A:

Changing a threonine in a phosphorylation site to an alanine prevents phosphorylation at that site. Blocking Thr286 phosphorylation with a T286A mutation prevents CaMKII generation of autonomous activity that disrupts neuronal activity and results in learning deficits.

b) T286D:

Changing a threonine to an aspartate puts a negative charge at the site, often making it act like it’s always phosphorylated. In the case of CaMKII, a T286D mutation renders the kinase constitutively active, which can interrupt normal LTP induction and normal memory storage and acquisition.

To learn more:

Rosbash, Hall & Young Awarded Nobel Prize

Michael Rosbash, Nobel Laureate

Brandeis researchers Michael Rosbash, the Peter Gruber Endowed Chair in Neuroscience, and Professor Emeritus of Biology Jeffrey C. Hall have received this year’s Nobel Prize in Physiology or Medicine, together with Michael Young from The Rockefeller University,  for their pioneering work on the molecular mechanisms controlling circadian rhythm.

More about Michael

More about Jeff

More about Drosophila

 

Garrity lab finds moisture-sensing genes in mosquitoes

Summary figure for Garrity lab paperby Zachary Knecht, PhD candidate

As the solvent of living cells, water is critical for all life on earth.  This makes monitoring how environmental conditions impact evaporation and subsequently sensing and locating water sources important for animal survival. This is particularly critical for insects, whose small body size makes them highly susceptible to dehydration. In addition, moisture sensing, or hygrosensation, is also important for the spread of insect-born disease. Mosquitoes that spread malaria or viruses like dengue and Zika, not only need to locate bodies of standing water in which to lay eggs, but also home in on the moisture that emanates from our bodies when searching for a blood meal. This dual role for hygrosensing in mosquito biology makes their hygrosensory machinery a promising target for pest control strategies. Until now though, the genes and molecules that function in insect hygrosensation have been completely unknown.

In a pair of recent papers in the journal eLife, researchers in the Garrity Lab at Brandeis University, in collaboration with colleagues at the University of Lausanne in Switzerland, have uncovered the cellular and molecular mechanisms that underlie insect hygrosensation using the fruit fly Drosophila melanogaster. Like mosquitoes, fruit flies detect humidity through specialized, innervated hair-like structures located on their antennae called sensilla. Each hygrosensing sensilla contains one cell that responds to increasing humidity (a moist cell), and one that responds to decreasing humidity (a dry cell).  These papers demonstrate that the balance of activity between dry and moist cells allows the insect to seek out or avoid particular humidity levels, a preference which changes depending on how hydrated or dehydrated the fly is.

To identify the molecules involved in sensing moisture, the researchers looked for mutant flies unable to distinguish between humid and dry air. They found that animals with mutations in four different genes disrupted the behavior. Strikingly, each of these genes encoded a different member of the same family of sensory receptors, the so-called Ionotropic Receptors or IRs.  Although IRs are found only in invertebrates, they belong to the same family as the ionotropic Glutamate Receptors, which lie at the heart of communication between nerve cells in the animal brain, including the human brain.  IRs differ from these relatives in that instead of sensing signals sent by neurons, they detect signals coming from the environment.  IRs are best known to act as chemical receptors, but the group found that a subset of IRs act instead to sense humidity. The researchers found two broadly expressed IRs, Ir25a and Ir93a, were required by both the dry cells and moist cells while the other two IRs, Ir40a and Ir68a, were specifically required by the dry and the moist cells, respectively. This suggests that Ir25a and Ir93a contribute to the formation of both moist and dry receptors, while Ir40a and Ir68a provide the dry- and moist-specific subunits to the receptor. Consistent with this view, the loss of either Ir68a or Ir40a alone only partially reduces the animal’s ability to sense humidity, but animals with mutations in Ir25a, Ir93a or both Ir40a and Ir68a are completely blind to moisture.

Having identified the specific genes required for sensing moisture, the next step is to determine the precise mechanism by which humidity activates these receptors. Furthermore, these genes are conserved in mosquitoes and other disease vectors, providing a clear path to translate what’s known about fly hygrosensation into the mosquito. These papers lay the groundwork for new mosquito control strategies that aim to precisely inhibit their ability to seek out water to reproduce and to seek out hosts to bite and spread deadly pathogens.

8th Annual Pepose Award Lecture moved to Monday, March 13

Professor Frank Werblin, Professor Emeritus of Neuroscience at the University of California, Berkeley will receive the eighth annual Jay Pepose ’75 Award in Vision Sciences from Brandeis University on Monday, March 13 (date change due to impending snowstorm). The event will be held at 4 PM (room to be announced). At that time, Werblin will deliver a public lecture titled, “The Evolution of Retinal Science over the Last 50 Years.”

During his research, Professor Werblin identified a number of cellular correlates underlying visual information processing in the retina. He has authored many articles in peer-reviewed journals, and has contributed articles on retinal circuitry to the Handbook of Brain Microcircuits (Oxford University Press) and retinal processing in the Encyclopedia of the Eye (Elsevier). Werblin founded Visionize in 2013, a company dedicated to helping patients suffering from vision diseases that cannot be corrected with glasses or surgery.

The Pepose Award is funded by a $1 million endowment established in 2009 through a gift from Jay Pepose ’75, MA’75, P’08, P’17, and Susan K. Feigenbaum ’74, P’08, P’17, his wife. Pepose is the founder and medical director of the Pepose Vision Institute in St. Louis and a professor of clinical ophthalmology at Washington University. He founded and serves as board president of the Lifelong Vision Foundation, whose mission is to preserve lifelong vision for people in the St. Louis community, nationally and internationally through research, community programs and education programs. While a student at Brandeis, he worked closely with John Lisman, the Zalman Abraham Kekst Chair in Neuroscience and professor of biology at Brandeis.

Protected by Akismet
Blog with WordPress

Welcome Guest | Login (Brandeis Members Only)