Eisenbud Lectures in Mathematics and Physics set for November 27-29, 2017

The Departments of Physics and Mathematics at Brandeis University are incredibly excited to announce that this year’s Eisenbud Lectures in Mathematics and Physics will be given Prof. James P. Sethna, a theoretical physicist whose work has often carved out new directions in condensed matter physics, in its broadest interpretation.

The Eisenbud Lectures are the result of a bequest by Leonard and Ruth-Jean Eisenbud, and this year marks the 100th anniversary of Leonard Eisenbud’s birth. Leonard Eisenbud was a mathematical physicist at SUNY-Stony Brook; upon his retirement he moved to the Boston area, as his son David was a member of the Mathematics faculty at Brandeis, and was given a desk here. The bequest is for an annual lecture series by physicists and mathematicians working on the boundary between the first two fields.

Prof. Sethna has tackled traditional and highly non-traditional topics in Physics. The title of one of his recent talks is “The Statistical Mechanics of Zombies”!. “Mosh Pit Dynamics at Heavy Metal Concerts” is another example where Jim uses the tools of statistical mechanics to understand a social phenomenon. Jim is a fascinating speaker, and these lectures promise to be enlightening and entertaining in equal measure. His playful enthusiasm for science is certain to draw you in. So, try not to miss this year’s series of three Eisenbud Lectures.

The first lecture on Monday, November 27 will be on “Sloppy models, Differential geometry, and How Science Works”, and is intended for a general science audience. This lecture will be held in Gerstenzang 121 at 4 PM. The second lecture on Tuesday, November 28 will be a colloquium-style lecture entitled “Crackling Noise” and will take place in Abelson 131 at 4 PM. The final lecture, “Normal form for renormalization groups: The framework for the logs” will be delivered at 10 AM on Wednesday, November 29 in Abelson 333.

Refreshments will be served 15 minutes prior to each talk. There will be a reception in Abelson 333 following Tuesday’s talk.

Additional information is available on the lecture’s website.

We hope to see you all at what promises to be an exciting series of talks!

Searches for Tenure-Track Faculty in the Sciences, 2017

Brandeis has six open searches for tenure-track faculty in the Division of Science this fall, with the intent to strengthen cross-disciplinary studies across the sciences. We are looking forward to a busy season of intriguing seminars from candidates this winter.

  1. Assistant Professor of Biochemistry. Biochemistry is looking for a creative scientist to establish an independent research program addressing fundamental questions of biological, biochemical, or biophysical mechanism, and who will maintain a strong interest in teaching Biochemistry.
  2. Assistant Professor of Chemistry. Chemistry seeks a creative individual at the assistant professor level for a tenure-track faculty position in physical (especially theoretical/computational) chemistry, materials chemistry, or chemical biology.
  3. Assistant Professor of Computer Science. Computer Science invites applications for a full-time, tenure-track assistant professor, beginning Fall 2018, in the broad area of Machine Learning and Data Science, including but not limited to deep learning, statistical learning, large scale and cloud-based systems for data science, biologically inspired learning systems, and applications of analytics to real-world problems.
  4. Assistant Professor in Soft Matter or Biological Physics. Physics invites applications for the position of tenure-track Assistant Professor beginning in the fall of 2018 in the interdisciplinary areas of biophysics, soft condensed matter physics and biologically inspired material science.
  5. Assistant Professor or Associate Professor in Psychology. Psychology invites applications for a tenure track appointment at the rank of Assistant or Associate Professor, with a specialization in Aging, to start August 2018. They seek an individual with an active human research program in any aspect of aging, including cognitive, social, clinical and health psychology.
  6. Tenure Track Assistant Professor in Applied MathematicsMathematics invites applications for a tenure-track position in applied mathematics at the rank of assistant professor beginning fall 2018. An ideal candidate will be expected to help to build an applied mathematics program within the department, and to interact with other science faculty at Brandeis. Candidates from all areas of applied mathematics will be considered.

Brandeis University is an equal opportunity employer, committed to building a culturally diverse intellectual community, and strongly encourages applications from women and minorities.  Diversity in its student body, staff and faculty is important to Brandeis’ primary mission of providing a quality education.  The search committees are therefore particularly interested in candidates who, through their creative endeavors, teaching and/or service experiences, will increase Brandeis’ reputation for academic excellence and better prepare its students for a pluralistic society.

Gregory Widberg named State Command Sergeant Major for the Massachusetts National Guard

Greg Widberg, Senior Mechanical Engineer in Physics, has been selected to be the 8th State Command Sergeant Major for the Massachusetts National Guard. Greg, who also performs repair work in the Division of Science, will be the senior enlisted advisor to Gary W. Keefe, Major General and The Adjutant General for the Massachusetts National Guard.

Roland Maher, Operations Manager for the Physics Department, said, As Gregory Widberg’s supervisor, I want to congratulate Greg on this opportunity with the Massachusetts National Guard.  All of us who know and respect Greg are proud of his accomplishments and wish him the all best with this wonderful opportunity. I am very sorry that we will be without Greg’s services and look forward to his return upon completion of his service to the Massachusetts National Guard.

Congratulations to Greg on his achievement!

Bjoern Penning is New Assistant Professor of Physics

Bjoern PenningBjoern Penning has joined the Physics department as a new Assistant Professor. He researches dark matter (DM) and has performed direct DM searches at the LUX-Zeplin (LZ) experiment and collider DM searches with CMS and ATLAS.

At Brandeis, he is a member of the High-Energy Physics Group. He will focus on direct dark matter searches with LZ and phenomenological dark matter research.

Penning received his Ph.D. from the University of Freiburg. Previous to his arrival at Brandeis, Penning was a Lecturer in Experimental Particle Physics at the University of Bristol.

Penning will teach Particle Physics (PHYS 107b) during the Fall 2017 semester.

Marcelle Soares-Santos Joins the Physics Department

Marcelle Soares-Santos

Marcelle Soares-Santos is joining Brandeis as an Assistant Professor in the Physics department starting in September 2017. Soares-Santos will continue her research into the nature of the accelerated expansion of the Universe.  She is also a member of the Dark Energy Survey (DES) Collaboration and the Large Synoptic Survey Telescope Dark Energy Science Collaboration (LSST/DESC).

Nature recently profiled Marcelle in “Turning point: Galactic groundbreaker. In the article, she discusses her research, career trajectory and future plans.

Chakraborty lab provides new understanding on the physics of granular materials

By Kabir Ramola, Ph.D

In the late 1980’s Sir Sam Edwards proposed a framework for describing the large scale properties of granular materials, such as sand or salt. In this description, similar to the well-established framework of statistical mechanics, the global properties of a complex system are determined by an average over all possible microscopic configurations consistent with a given global property. This is usually attributable to the very fast dynamics of the constituent particles making up the system. The extension of such treatments to granular systems where particles are static or ‘jammed’ represents a fundamental challenge in this field. Even so, Edwards’ conjecture postulated that for given external parameters such as volume, all possible packings of a granular material are equally likely. Such a conjecture, like Boltzmann’s hypothesis in statistical mechanics, can then be used as a starting point to develop new physical theories for such materials based on statistical principles. Indeed, several frameworks have been developed assuming this conjecture to be true.

Figure 1 : Snapshot of the system studied and illustration of the associated energy landscape at different volume fractions.

A simple illustration of this conjecture would be, if one were to pour sand into a bowl, and not bias the preparation in any way, then all the trillion trillions of configurations allowed for the grains would be equally likely. Clearly such a conjecture is utterly infeasible to test experimentally.  In a recent paper that appeared in Nature Physics, we instead performed detailed numerical computations on a theoretical system of soft disks (in two dimensions) with hard internal cores. We focused on a system of 64 disks which already pushed the limits of current computational power. We found that if one fixes the density of a given system of disks, the probability of a packing occurring depends on the pressure, violating Edwards’ proposition. However, at a critical density, where particles just begin to touch or ‘jam’, this probability remarkably becomes independent of the pressure, and all configurations are indeed equally likely to occur. This jamming point is in fact very interesting in its own right since most granular materials are found at the threshold of being jammed and ‘unjammed’. To be fair to Edwards, the hypothesis was made for ‘hard’ grains in which particles are precisely at this threshold, and therefore our numerics seem to confirm the original statement. This is the first time that this statement has been out to a direct test and will no doubt lead to many interesting directions in the future.

Links to news sources describing this article:

doi: 10.1038/nphys4168
Numerical test of the Edwards conjecture shows that all packings are equally probable at jamming.
Stefano Martiniani, K. Julian Schrenk, Kabir Ramola, Bulbul Chakraborty & Daan Frenkel.
Nature Physics
2017

 

Protected by Akismet
Blog with WordPress

Welcome Guest | Login (Brandeis Members Only)