Simulating viral capsid assembly

Viral capsids assemble into complex structures with high fidelity, but also can adapt when given other nucleic acids cargoes to package. In a recent paper in Nano Letters, Brandeis physics grad student Oren Elrad and Professor Michael Hagan used computer simulations to investigate the mechanisms by which this occurs. These simulations were done on the Brandeis High Performance Computing cluster.

How long does it take the brain to access short-term memory?

A recent paper in Neuroimage by Brandeis Neuroscience Ph. D. program alumnus Yigal Agam, Professor Robert Sekuler and coworkers attempts to answer the question. To identify the earliest neural signs of recognition memory, they used event related potentials collected from human observers engaged in a visual short term memory task.  Their results point to an initial feed-forward interaction that underlies comparisons between what is being current seen and what has been stored in memory.  The locus of these earliest recognition-related potentials is consistent with the idea that visual areas of the brain contribute to temporary storage of visual information for use in ongoing tasks. This study provides a first look into early neural activity that supports the processing of visual information during short-term memory.

Neuroscience in Bristol (UK)

James Hodge, a former postdoc from the Griffith lab here at Brandeis, is now running a lab at the University of Bristol in England. James is looking for a qualified postdoc to work on molecular mechanisms of synaptic plasticity and learning using Drosophila.

Click here to read full details.

Actin "pointers" for EM labeling

Single particle electron microscopy reconstruction can be a powerful tool for determining the structure of large protein complexes. One limitation of the technique is the difficulty in coming up with specific labels for the protein that can be visualized with EM. In a new paper in RNA, postdoc Beth Stroupe and coworkers show that the use of the actin-nucleating protein Spire as a cloneable tag allows them to nucleate actin filaments that then “point” to the location of the tag in the complex seen in EM, and applied the technique to their studies of the C complex spliceosome.

Nature NeuroPod

NeuroPod is Nature‘s (relatively) new podcast featuring interviews with prominent neuroscientists. Professor Eve Marder predicts the future of neuroscience in the November edition, and Professor Leslie Griffith talks about studying sleep in Drosophila in the December edition.

How regions of the brain get their specificity

The cortex is divided into functionally distinct regions, and the layers of the visual cortex are a classic example. But how much do the intrinsic electrical properties of a particular neuron type vary from region to region? In a recent paper in J. Neurosci., Brandeis Neuroscience graduate students Mark Miller and Ben Okaty together with Prof. Sacha Nelson found a new region-specific firing type in Layer 5 pyramidal neurons. They argue that features as basic as membrane properties can be region-specific, and that this regional specialization of circuitry contributes to the determination of the region’s functional specialization.

Protected by Akismet
Blog with WordPress

Welcome Guest | Login (Brandeis Members Only)