Research Funding For Undergrads: MRSEC Summer Materials Undergraduate Research Fellowships

The Division of Science wishes to announce that, in 2017, we will offer seven MRSEC Summer  Materials Undergraduate Research Fellowships (SMURF) for Brandeis students doing undergraduate research, sponsored by the Brandeis Materials Research Science and Engineering Center.

The fellowship winners will receive $5,000 stipends (housing support is not included) to engage in an intensive and rewarding research and development program that consists of full-time research in a MRSEC lab, weekly activities (~1-2 hours/week) organized by the MRSEC Director of Education, and participation in SciFest VII on Aug 3, 2017.

The due date for applications is February 27, 2017, at 6:00 PM EST.

To apply, the application form is online and part of the Unified Application: https://goo.gl/9LcSpG (Brandeis login required).


Eligibility

Students are eligible if they will be rising Brandeis sophomores, juniors, or seniors in Summer 2017 (classes of ’18, ’19, and ’20). No prior lab experience is required. A commitment from a Brandeis MRSEC member to serve as your mentor in Summer 2017 is required though. The MRSEC faculty list is: http://www.brandeis.edu/mrsec/people/index.html

Conflicting Commitments
SMURF recipients are expected to be available to do full time laboratory research between May 30 – August 4, 2017. During that period, SMURF students are not allowed to take summer courses, work another job or participate in extensive volunteer/shadowing experiences in which they commit to being out of the lab for a significant amount of time during the summer. Additionally, students should not be paid for doing lab research during this period from other funding sources.

Application Resources
Interested students should apply online (Brandeis login required). Questions that are not answered in the online FAQ may be addressed to Steven Karel <divsci at brandeis.edu>.

Full year funding for undergraduates working in computational neuroscience

The Division of Science is pleased to announce the availability of Traineeships for Undergraduates in Computational Neuroscience through a recently-renewed grant from the National Institute on Drug Abuse. Traineeships will commence in summer 2017 and run through the academic year 2017-18.

Please apply to the program by February 27, 2017 at 6 pm to be considered.

Traineeships in Computational Neuroscience are intended to provide intensive undergraduate training in computational neuroscience for students interested in eventually pursuing graduate research. The traineeships will provide approximately $5000 in stipend to support research in the summer, and $3000 each for fall and spring semesters during the academic year. Current Brandeis sophomores and juniors (classes of ’18, ’19) may apply. To be eligible to compete for this program, you must

  • have a GPA > 3.0 in Div. of Science courses
  • have a commitment from a professor to advise you on a research project related to computational neuroscience
  • have a course work plan to complete requirements for a major in the Division of Science
  • intend to apply to grad school in a related field.

Interested students should apply online (Brandeis login required). Questions that are not answered in the online FAQ may be addressed to Steven Karel <divsci at brandeis.edu> or to Prof. Paul Miller.

Research Funding For Undergrads: Division of Science Fellowships

The Division of Science announces the opening of the Division of Science Summer Undergraduate Research Fellowship competition for Brandeis students doing undergraduate research in Summer 2017.  These fellowships are funded by generous alumni donations.

New this year are the Helaine B. Allen Summer Fellowships. These fellowships are for students working with Brandeis faculty members focusing in the sciences, specifically in the fields of Biochemistry, Biology, Biophysics, Chemistry, Neuroscience, and/or Physics.  There are five $5,000 awards available, each with $1,000 additional funding for laboratory supplies/support. See the Div Sci website for details of additional programs.

The due date for applications  is February 27, 2017,  at 6:00 PM EST.

Students who will be rising Brandeis sophomores, juniors, or seniors in Summer 2016 (classes of ’18, ’19, and ’20), who in addition are working in a lab in the Division of Science at the time of application, are eligible to apply. A commitment from a Brandeis faculty member to serve as your mentor in Summer 2017 is required.

The Division of Science Summer Program will run from May 30 – Aug 4, 2017. Recipients are expected to be available to do full time laboratory research during that period, and must commit to presenting a poster at the final poster session (SciFest VII) on Aug 3, 2017.

Interested students should apply online (Brandeis login required). Questions that are not answered in the online FAQ may be addressed to Steven Karel <divsci at brandeis.edu>.

Research Funding for Undergrads: M. R. Bauer Fellows

The Division of Science is pleased to announce that a generous gift from the M. R. Bauer Foundation will again this year fund ten M. R. Bauer Foundation Summer Undergraduate Research Fellows. The due date for applications for Summer 2017 is February 27, 2017 at 6:00 PM EST. 

M. R. Bauer Fellows will receive $5000 as a stipend in support of their summer research (housing support is not included). Students who will be rising Brandeis sophomores, juniors, or seniors in Summer 2016 (classes of ’18, ’19, and ’20), are eligible to apply. A commitment from a Brandeis Division of Science faculty member to serve as mentor in Summer 2016 on a project leading to a senior thesis is required.

The Division of Science Summer Program will run from May 30 to Aug 4, 2017. M. R. Bauer Fellows are expected to be available to do full time laboratory research during that period, and must commit to presenting a poster at the final poster session (SciFest VII) on August 3, 2017. M.R. Bauer Fellows are also expected to give back to the University in ways that promote science and research.

Interested students should apply online (Brandeis login required). Questions that are not answered in the online FAQ may be addressed to Steven Karel <divsci at brandeis.edu>.

MRSEC offers 2 one-week courses in Summer 2017

Brandeis’ MRSEC is offering two one-week courses in June 2017. “Introduction to Microfluidics Technology” and “Biomaterials: Kinesin Production for Beginners” are both hands-on laboratory courses with no prerequisites.

  • Introduction to Microfluidics Technology
    Date: June 19-23, 2017
    This course is intended for graduate students, post docs, faculty, and industrial scientists/engineers interested in utilizing microfluidic technology in their work, both in the physical and life sciences
  • Biomaterials: Kinesin Production for Beginners
    Date: June 26-30, 2017
    This course is intended for graduate students, postdocs, faculty, and industrial scientists/engineers interested in laboratory-scale expression and purification of kinesins, the biomolecular motors that power Brandeis MRSEC’s highly regarded active liquid crystals. The course is suitable for non-biologists who do not have access to any major specialized equipment at their home institution, since the goal of the course is to make protein production accessible to a wider variety of labs.

Register early (by March 1) for a $50 discount. Regular registration for both courses closes March 31, 2017.

Both courses are sponsored by the National Science Foundation’s Bioinspired Soft Materials Research Science and Engineering Center (MRSEC) at Brandeis.

The Benefits of Middle Age

Almost all our cells harbor a sensory organelle called the primary cilium, homologous to the better known flagella found in protists. Some of these cilia can beat and allow the cell to move (eg. in sperm), or move fluid (eg. cerebrospinal fluid) around them. However, other specialized cilia such as those found in photoreceptor cells and in our olfactory neurons function solely as sensory organelles, providing the primary site for signal reception and transduction. The vast majority of our somatic cells display a short and simple rod-like cilium that plays crucial roles during development and in adulthood. For instance, during development, they are essential for transducing critical secreted developmental signals such as Sonic hedgehog that is required for the elaboration of cell types in almost every tissue (eg. in brain, bones, muscles, skin). In adults, cilia are required for normal functioning of our kidneys, and primary cilia in hypothalamic neurons have been shown to regulate hunger and satiety.

Given their importance, it is not surprising that defects in cilia structure and function lead to a whole host of diseases ranging from severe developmental disorders and embryonic lethality to hydrocephalus (fluid accumulation in the brain), infertility, obesity, blindness, and polycystic kidney among others. Often these diseases manifest early in development resulting in prenatal death or severe disability, but milder ciliary dysfunction leads to disease phenotypes later in life.

Much is now known about how cilia are formed and how they function during development. However, surprisingly, how aging affects cilia, and possibly the severity of cilia-related diseases, is not well studied. A new study by postdocs Astrid Cornils and Ashish Maurya, and graduate student Lauren Tereshko from Piali Sengupta’s laboratory, and collaborators at University College Dublin and University of Iowa, begins to address this question using the microscopic roundworm C. elegans (pictured below). These worms display cilia on a set of sensory neurons; these cilia are built by mechanisms that are similar to those in other animals including in humans. Worms have a life span of about 2-3 weeks, thereby making the study of how aging affects cilia function quite feasible.

benefits-midage

They find that cilia structure is somewhat altered in extreme old age in control animals. However, unexpectedly, when they looked at animals carrying mutations that lead to human ciliary diseases, the severely defective cilia seen in larvae and young adults displayed a partial but significant recovery during middle-age, a period associated with declining reproductive function. They went on to show that the heat-shock response and the ubiquitin-proteasome system, two major pathways required for alleviating protein misfolding stress in aging and neurodegenerative diseases, are essential for this age-dependent cilia recovery in mutant animals. This restoration of cilia function is transient; cilia structure becomes defective again in extreme old age. These results suggest that increased function of protein quality control mechanisms during middle age can transiently suppress the effects of some mutations in cilia genes, and raise the possibility that these findings may help guide the design of therapeutic strategies to target specific ciliary diseases. Some things can improve with aging!

Protected by Akismet
Blog with WordPress

Welcome Guest | Login (Brandeis Members Only)