Asher Preska Steinberg ’13 receives NSF Graduate Fellowship

steinbergAsher Preska Steinberg ’13, who majored in both chemistry and physics at Brandeis, has been awarded a National Science Foundation Graduate Research Fellowship in materials research.  The fellowships, which are awarded based on a national competition, provide three full years of support for Ph.D. research and are highly valued by students and institutions.

At Brandeis, Asher worked on his senior thesis in chemistry with Professor Milos Dolnik as part of the Epstein Group. They studied the growth dynamics of Turing patterns in photosensitive reaction-diffusion systems. As part of the 2011 NYU MRSEC Research Experiences for Undergraduates (REU) program Asher worked with Paul Chaikin to study active colloids, and they recently published an article in Science entitled “Living Crystals of Light-Activated Colloidal Surfers”. The article received attention from the press, including the LA Times, Wired, and Ars Technica.  Last summer Asher participated in the Columbia EFRC Research Program for Undergraduates (RPU) and studied silver plasmonic nanoparticles with Louis Brus.

Asher will be attending California Institute of Technology this coming fall in the field of Chemical Physics.

Hall, Rosbash, and Young share Wiley Prize

menetfig1The 12th annual Wiley Prize in Biomedical Sciences has been awarded jointly to Michael Rosbash and Jeffrey Hall of Brandeis and Michael Young of Rockefeller University. The trio are once again being honored for their work on the molecular mechanisms governing circadian rhythms (see more on this site)

Ye Zhang wins Materials Research Society Poster Award

Ye Zhang, a Postdoctoral Fellow from Prof. Bing Xu’s research group at Brandeis, won the 2012 MRS Fall Meeting Poster Awards for her poster titled Self-oscillatory Hydrogels Driven by Belousov-Zhabotinsky Reaction within the symposium on Bioinspired Directional Surfaces-From Nature to Engineered Textured Surfaces & Precision Polymer Materials-Fabricating Functional Assemblies, Surfaces, Interfaces, and Devices. The goal of the project is to make materials that operate like synthetic cardiac or intestinal muscles; feed them and they will pump forever, or as long as the arteries remain open. Ye, the poster’s lead author, is a member of the Brandeis Materials Research Science and Engineering Center (MRSEC) working on project involving the groups of Profs. Bing Xu, Irving Epstein and Seth Fraden of the Chemistry and Physics Departments.

Ye’s work focuses on the development and study of active matter based on non-linear chemical dynamics, specifically the Belousov-Zhabotinsky reaction. Beginning two years ago she systematically modified a class of gels that exhibit periodic volume oscillations which were produced by other groups. First, Ye succeeded in significantly improving the amplitude of volume oscillations. Next, she developed several novel self-oscillatory systems and established a systematic way to improve the bulk material properties of the synthetic heart.  To build a reliable beating heart, Ye optimized the molecules building the material at the molecular level of tens to hundreds of atoms, or scales of 1 nm and then figured out how to assemble them into networks of polymers on the scales of 10 – 100 nm, and then further assembled them on a longer length scale, into elastic networks on the scales of microns, and finally sculpted the resulting rubbery materials using photolithographic and microfluidic methods into useful shapes for study and application. Ye’s award is a recognition of her contribution to molecular engineering and serves as a quintessential example of the  “bottom-up” construction methods exemplified by the interdisciplinary teams of the Brandeis MRSEC.

The best battalion in the National Guard

Gregory Widberg is the Sr. Mechanical Engineer in the Physics department who also works with other departments in the Division of Science repairing scientific equipment.  Greg was called to active duty and served in Afghanistan from 2011 to 2012 as the Command Sgt. Major for the 1st Battalion, 182nd Infantry Regiment.  Greg is shown accepting the Walter T. Kerwin Jr. Readiness Award in a ceremony in Washington, DC on October 23, 2012.  The award is presented to the battalion with the highest level of readiness in its respective component.

General Raymond Odierno, chief of staff, U. S. Army, Lt Col. Ron Cupples, commander, 1st Battalion, 182nd Infantry Regiment, Massachusetts Army National Guard, Command Sgt. Maj. Greg Widberg, senior enlisted advisor, 1st Battalion, 182nd Infantry Regiment, Massachusetts Army National Guard, and Command Sgt. Maj. Raymond Chandler III, Sgt. Maj. of the Army, pose for a picture after Odinero presented the Walter T.Kerwin Jr. Readiness Award to Cupples and Widberg during a ceremony at the Association of the United States Army Eisenhower Luncheon as the Walter E. Washington Convention Center, Washington D.C., Oct. 23, 2012. The Kerwin Award, which is open to Army National Guard and Army Reserve battalions, is presented to the battalion with the highest level of readiness in it’s respective component. In order to be considered each battalion must have been rated as having superior performance in eight specific areas as well as meeting other specific criteria. (U.S. Army photo by Staff Sgt. Jerry Saslav, Massachusetts National Guard Public Affairs)

Bisphenol A researchers win Gabbay Award

Bisphenol A (BPA) has been used in the synthesis of polycarbonate plastics over the years. BPA is also a powerful estrogen analog. Three researchers, Patricia Hunt (Washington State Univ.), Ana Soto (Tufts) and Carlos Sonnenschein (Tufts), will today be awarded the 2012 Jacob Heskel Gabbay Award for their work identifying the cellular and developmental effects of BPA exposure. The three will lecture today, Oct. 22, at 3:30 pm in Rapaporte Treasure Hall, Goldfarb Library.

see also story at BrandeisNOW

Massry Prize for Hall, Rosbash, and Young

Brandeis scientists Michael Rosbash and Jeff Hall, along with Michael Young (Rockefeller Univ.) will receive the 2012 Massry Prize, according to Brandeis NOW. The prize, established in 1996 by the Meira and Shaul G. Massry Foundation,   honors “outstanding contributions to the biomedical sciences and the advancement of health“. This trio of researchers has garnered several prizes already for their contributions to understanding the mechanisms underlying circadian rhythms.

The winners will receive the prize and present lectures on October 29, 2012 at the University of Southern California.

There will be a couple of opportunities to hear Michael Rosbash talk about circadian rhythms locally, first at the Inaugural Lecture for the Gruber chair on Thursday, then at the Brandeis Café Science fall season opener on October 1.

 

Baskaran Wins NSF-CAREER award to pursue research on active fluids

Dr. Aparna Baskaran of the Physics Department has been awarded the prestigious CAREER grant from the National Science Foundation that is a highly competitive development grant for early career tenure track faculty members. This grant will fund the research ongoing in Dr. Baskaran’s group on dynamics in active materials. Active materials are a novel class of complex fluids that are driven out of equilibrium at the level of individual entities. Examples of such systems include bacterial suspensions, cytoskeletal filaments interacting with motor proteins and inanimate systems such as self-propelled phoretic colloidal particles. The theoretical challenge in understanding these systems lies in the fact that, unlike traditional materials, we no longer have the scaffold of equilibrium on which to base the theoretical framework.  At the practical front, these materials exhibit novel properties not seen in regular materials.  Further, they form the physical framework of biological systems  in that regulatory mechanisms modulate the mechanical properties of this material in response to environmental stimuli.  Dr. Baskaran’s research in this field will be done in collaboration with the groups of Dr. Michael Hagan, Dr. Zvonimir Dogic and Dr. Bulbul Chakraborty. It will enhance and complement the MRSEC research activities in the active materials thrust.

Figure Caption : Videos of example systems for active materials. A) A fish school exhibiting complex collective swimming. B) Swarming at the edge of an E. Coli Bacterial Colony. C) Cytoplasmic streaming inside the yolk of a fertilized cell.

NIH fellowships for Kuzirian and Ghiretti support neural development research

Marissa Kuzirian and Amy Ghiretti, graduate students in the lab of Dr. Suzanne Paradis, were each recently awarded Ruth L. Kirschstein National Research Service Awards for Individual Predoctoral Fellows (F31s) from the National Institutes of Health. Marissa’s 2.5-year award from the National Institute of Neurological Disorders and Stroke funds research to explore the role of Semaphorin4D and its receptor, PlexinB1, in regulating inhibitory synapse development and ultimately setting up proper neural connections in the mammalian CNS. Amy’s 2-year award from the National Institute on Drug Abuse funds a collaborative project between the Paradis, Lau, and Van Hooser labs here at Brandeis to elucidate the function of Rem2 in mediating experience-dependent changes in dendritic morphology in a living, intact animal system.

The basis for Marissa and Amy’s work comes from research into neurodevelopmental disorders such as Autism Spectrum Disorders (ASDs), as well as drug abuse and addiction. Proteins that regulate neurodevelopmental processes such as synapse development and dendritic morphology are important in both neurological disorders and drug addiction. Proper communication between neurons depends on the precise assembly and development of synaptic connections. The transmembrane protein Semaphorin4D (Sema4D) is necessary for proper GABAergic synapse formation, as knockdown of expression in the postsynaptic neuron by RNAi leads to a decrease in GABAergic synaptic density in cultured neurons (Paradis et al 2007). Marissa’s work will further explore this role of Sema4D in GABAergic synapse development.

Inhibitory synapses are identified in white along dendrites of a rat hippocampal neuron. Synapses are defined as sites of overlap between the postsynaptic protein GABAA receptor subunit γ2 (red) and the presynaptic protein GAD65 (blue) visualized by immunostaining. Neurons are visualized by immunostaining for MAP2 (green).

Marissa’s preliminary results demonstrate that adding the soluble, extracellular domain of Sema4D to cultured hippocampal neurons is sufficient to drive GABAergic synapse formation. This increase depends on the expression of Sema4D’s receptor, PlexinB1. Thus, Marissa’s work defines PlexinB1 as a novel receptor mediating GABAergic synapse formation in response to Sema4D in the mammalian CNS. The goal of Marissa’s project is to elucidate the role of Sema4D and its receptor, PlexinB1, in GABAergic synapse development. In experiments she proposed, she hypothesizes that Sema4D acts to initiate assembly of GABAergic synaptic proteins such as GABAA receptors and gephyrin through its receptor PlexinB1. This will be tested using a variety of imaging techniques in cultured hippocampal neurons, including confocal and time-lapse imaging, to measure the mobility and accumulation of GABAergic synaptic proteins in neurons after treatment with soluble Sema4D. The experiments will not only greatly expand our understanding of a novel receptor-ligand pair in GABAergic synapse development, it will inform as to some of the basic mechanisms underlying GABAergic synaptogenesis.

Molecular mechanisms, such as the Sema4D-PlexB1 interaction described above, are critical for the ability of the central nervous system (CNS) to respond to extracellular stimuli and make corresponding changes in the structure and function of a neuron. At the behavioral level, this plasticity allows an organism to respond to a changing environment appropriately in order to survive. At the level of individual neurons, this is reflected in changes in gene expression that occur in response to a variety of stimuli, including alterations in neuronal network activity. The goal of Amy’s work is to characterize a direct molecular link between changes in neuronal activity and changes in dendritic morphology.

A neuron in the optic tectum of a Xenopus tadpole; Green Fluorescent Protein expression allows the dendrites to be visualized.

Amy has previously implicated the protein Rem2, a type of signaling molecule known as a GTPase, as a mediator of such neurodevelopmental processes as excitatory synapse formation and dendritic morphology (Ghiretti & Paradis 2011). The expression of Rem2 in individual neurons is upregulated following increased neuronal activity, suggesting that it may serve as a direct link between changes in activity and corresponding changes in the structure and function of neurons. Her recently funded work will utilize Xenopus laevis tadpoles to study the effects of visual experience (by exposing the tadpoles to a light stimulus) on Rem2 expression, and in turn, how Rem2 mediates experience-dependent changes in the morphology of neurons in a region of the brain known as the optic tectum, where visual processing takes place. Ultimately, a full understanding of how Rem2 functions to shape the morphology of neurons in an intact system may help to inform knowledge of how the human brain changes as a result of neurological disorders or drug abuse, and aid in the development of more effective treatments to prevent these changes from occurring.

Protected by Akismet
Blog with WordPress

Welcome Guest | Login (Brandeis Members Only)