Division of Science Hosts the 2016 Undergraduate Science Symposium

Written by Jena Pitman-Leung.

uss-img1

The Division of Science Graduate Affairs group hosted the 2nd annual Brandeis University Undergraduate Science Symposium on Saturday 17th, 2016. More than 60 students representing institutions from Massachusetts, Rhode Island, and New Hampshire attended the event, which was held in the Shapiro Science Center. The morning session included research talks from faculty in the Life Sciences (Don Katz, Liz Hedstrom) and the Physical Sciences (Matt Headrick, Christine Thomas), followed by panel discussions with faculty in the Life Sciences (Liz Hedstrom, Bruce Goode, and Maria Miara) and Physical Sciences (Gabriella Sciolla, Isaac Krauss, Jordan Pollack) on how to apply to graduate school. The students then came together for a networking lunch with Brandeis students, postdocs, and faculty. Lunch was followed by a well attended poster session, where 38 students had the opportunity to present their independent research. The day ended by awarding prizes for the best posters in five disciplines. The winners were:

Biology: Rahim Hirani, Hampshire College, “The regulatory role of Beta-Arrestin 1 in prostate cancer cell proliferation”
Neuroscience: Paige Miranda, Wellesley College, “Metabolic Processes Driving Hippocampal Long Term Potentiatio”
Biochemistry: Myfanwy Adams, Wellesley College, “Expression of a Cardiac ATP-sensitive Potassium Channel in a Heterologous Cell Line”
Chemistry: Natsuko Yamagata, Brandeis University, “Exploring the Unexplored: Supramolecular Hydrogels of Retro-Inverso Peptides for 3D Cell Culture”
Physics: Jameson O’Reilly, Northeastern University, “A capillary-mimicking optical tissue phantom for diffuse correlation spectroscopy”

The Division of Science is committed to supporting local undergraduate research, and is excited about the possibility of these bright young scientist choosing Brandeis for their graduate study. We look forward to hosting similar events in the future!

Amy Lee Joins Biology Faculty

On August 1, Amy Lee joined the Biology department as an Assistant Professor. Previously, Amy was an American Cancer Society Postdoctoral Scholar in Jamie Cate’s lab at University of California, Berkeley. She received her Ph.D. in Virology from Harvard University in Sean Whelan’s lab and her Bachelors of Science in Biology from Massachusetts Institute of Technology.

Stx.key

eIF3d structure, see Figure 2 at http://rdcu.be/jzDD

Amy’s research focuses on understanding how gene regulation shapes cell growth and differentiation, and how dysregulation leads to human diseases like carcinogenesis and neurodegeneration. She is interested in discovering new mechanisms of mRNA translation initiation and novel functions of RNA-binding proteins and eukaryotic translation factors. Her research combines genome-wide and computational approaches together with molecular genetics, cell biology, biochemistry, and structural biology techniques.

Amy recently published a paper in Nature together with the Jamie Cate, Jennifer Doudna, and Philip Kranzusch describing the discovery of a new translation pathway that controls the production of proteins critical to regulating the growth and proliferation of cells. Cancer is characterized by uncontrolled cell growth, which means the protein production machinery goes into overdrive to provide the building materials and control systems for new cells. Hence, biologists for decades have studied the proteins that control how genes are transcribed into mRNA and how the mRNA is read and translated into a functioning protein. One key insight more than 40 years ago was that a so-called initiation protein must bind to a chemical handle on the end of each mRNA to start it through the protein manufacturing plant, the ribosome. Until now, this initiation protein was thought to be eIF4E (eukaryotic initiation factor 4E) for all mRNAs.

Amy and her colleagues discovered that for a certain specialized subset of mRNAs – most of which have been linked somehow to cancer – initiation is triggered by a different protein, called eIF3d. The finding was a surprise because the protein is part of an assembly of 13 proteins called eIF3 -eukaryotic initiation factor 3 – that has been known and studied for nearly 50 years, and no one suspected its undercover role in the cell. This may be because eIF3’s ability to selectively control mRNA translation is turned on only when it binds to the set of specialized mRNAs. Binding between eIF3 and these mRNAs opens up a pocket in eIF3d that then latches onto the end-cap of mRNA to trigger the translation process. Subsequent X-ray crystallography of eIF3d revealed the structural rearrangements that must occur when eIF3 binds to the mRNA tag and which open up the cap-binding pocket. eIF3d thus presents a promising new drug target in cancer, as a drug blocking this binding protein could shut off translation of only the growth-promoting proteins and not other life-critical proteins inside the cell.

Lee AS, Kranzusch PJ, Doudna JA, Cate JH. eIF3d is an mRNA cap-binding protein that is required for specialized translation initiation. Nature. 2016.

 

SPROUT Continues Growing Support for Brandeisian Innovators

Lil_Sprout_smallProgram Will Bestow Up to $100,000 to Promising Research Proposals

Could your research impact the world or do you have an idea that could create positive change? Need funding? SPROUT can help with that.

The popular SPROUT program, now in its sixth year, has announced increased funding for the 2016 round of proposals. SPROUT is funded by the Office of the Provost and run by Office of Technology Licensing. This year the Hassenfeld Family Innovation Center, recently created to support entrepreneurial and innovative collaborations happening across campus, contributed an additional $50,000 to be disbursed among the most promising requests.

Historically, the program has supported a diverse scope of lab-based innovations from all departments in the sciences  including Biology, Biochemistry, Physics, and Chemistry.  Past candidates have proposed projects ranging  from early‐stage research and development to patent‐ready projects ranging from treatments for diseases to lab tools.  Brandeis lab scientists have pitched their projects, including HIV vaccines (Sebastian Temme, Krauss lab),  neuroslicers (Yasmin Escobedo Lozoya, Nelson lab) and the use of carrot fiber as an anti-diabetic  (Michelle Landstrom, Hayes lab) to a panel of distinguished, outside judges. A SPROUT award can jumpstart your innovation and lead to continued opportunities. SPROUT awardees researching the use of carrot fiber as an anti-diabetic food agent were just awarded additional funding by the Massachusetts Innovation Commercialization Seed Fund program.

Other successful projects include “Enzymatic Reaction Recruits Chiral Nanoparticles to Inhibit Cancer Cells” led by Xuewen Du from the Xu lab, “Semaphorin4D: a disease‐modifying therapy for epilepsy” led by Daniel Acker of the Paradis lab, “X‐ray transparent Microfluidics for Protein Crystallization” led by Achini  Opathalage from the Fraden lab and “New and Rational Catalyst Development for Green Chemistry”  from the Thomas lab.  Those interested in learning more about past SPROUT winners are invited to read this recent Brandeis NOW article. A list of additional winners, along with their executive summaries, is available on the Brandeis OTL website.

Teams seeking support for scientific projects which require bench research, lab space, and/or lab equipment are encouraged to submit an abstract prior to the March 7 deadline. The competition is open to the entire Brandeis community including faculty, staff, and students. The Office of Technology Licensing will conduct information sessions on Thursday, February 25th 11:30 a.m.‐12:30 p.m. in Volen 201 and on Monday, February 29th 1:00 p.m.‐2:00 p.m. at the Shapiro Science Center, 1st Floor Library. Staff will address the application process as well as specific questions and interested applicants are highly encouraged to attend.

More details regarding the SPROUT awards, process and online application may be found at bit.ly/SPROUT16.

Symposium Celebrating Ranjan Sen to be held January 30, 2016

senThe Biology department is cosponsoring an all-day symposium “Cellular and Molecular Immunology in Health and Disease” on Saturday, January 30. The symposium will be held in Gerstenzang 121 from 8:30 am to 6:00 pm. This symposium celebrates Ranjan Sen’s 60th birthday and is organized by Sen’s Brandeis alumni.  This symposium is open to the public, although the breakfast and lunch are by invitation only and are not open to the public.

The list of speakers includes:

  • Sen_Symposium_2016_FINALFredrick Alt, Ph.D., Harvard Medical School
  • Dipanjan Chowdhury, Ph.D., Harvard Medical School
  • David Schatz, Ph.D., Yale School of Medicine
  • Stephen Desiderio, M.D., Ph.D., John Hopkins Medicine
  • Sankar Ghosh, Ph.D., Columbia University
  • Barbara Nikolajczyk, Ph.D., Boston University
  • Stephen Smale, Ph.D., University of California, Los Angeles
  • Joel Pomerantz, Ph.D., Johns Hopkins University School of Medicine
  • Rudolf Grosschedl, Ph.D., Max Planck Institute, Germany
  • Batu Erman, Ph.D., Sabanci University, Turkey
  • Christina Jamieson, Ph.D., University of California, San Diego, School of Medicine
  • Yehudit Bergman, Ph.D., The Hebrew University of Jerusalem, Israel

More information about this event is available.

 

Weighing in on CTE diagnosis

We noticed a new paper this week in Brain Research on chronic traumatic encephalopathy (brain damage from repeated blows to the head, which has been all over the news this year) from a Brandeis author, Madeline Engeler ’16, a Biology/HSSP double major.

We reached out to Madeline for the inside scoop, here’s what she told us:

Yes this is my paper. I am so excited it is finally published! […] This research came from the summer of 2014 when I was at the Cleveland Clinic Lerner Research Institute. I was funded through Brandeis’ World of Work fellowship program and I gained credit for my HSSP hands-on experience.
This research came about from some of us in the lab reading papers about post-mortem diagnosis of CTE in NFL players. What was intriguing was that very similar morphologies were seen in the epileptic brain resections we were studying. So we decided to depart from our epileptic brain research and stained these samples with the same antibodies as in the CTE papers. We also obtained NFL brain samples from Dr. Mckee at BU to do our own staining. Our results showed remarkably similar images from the epileptic and CTE brains. This caused us to posit that perhaps the post-mortem diagnosis of CTE is too broad because it encompasses other neurological conditions, such as epilepsy.

You can read the paper for yourself online:

Puvenna V, Engeler M, Banjara M, Brennan C, Schreiber P, Dadas A, Bahrami A, Solanki J, Bandyopadhyay A, Morris JK, Bernick C, Ghosh C, Bazarian JJ, Janigro D. Is phosphorylated tau unique to chronic traumatic encephalopathy? Phosphorylated tau in epileptic brain and chronic traumatic encephalopathy. Brain Res. 2015.

Phi Beta Kappa Elects 51 Division of Science Students

Phi_Beta_Kappa_KeyThe Brandeis chapter of Phi Beta Kappa recently elected 97 new members. Of the 97, at least 51 undergraduate students are majors in the Division of Science (Biochemistry, Biological Physics, Biology, Chemistry, Computer Science, Mathematics, Neuroscience, Physics and Psychology).

Congratulations to the following new Phi Beta Kappa members from the Division of Science:

Biochemistry

Malia Barbra McAvoy
Yehonatan Otzar Meschede-Krasa
Juhee Park
Lior Rozhansky
Hanchen Zhao (double major with Chemistry)

Biological Physics

Abigail Rose Knecht

Biology

Ignatius Ang
Zachary Ian Fried
Jenna Leah Kahane
Ariel Jennifer Katz
Yang Li
Yixuan Liao
Alice Yuan Meng
Khang Vi Nguyen (double major with Chemistry)
Danielle Marie Quintin
Sarah Shin

Chemistry

Khang Vi Nguyen (double major with Biology)
Soobyung Park
Noam Isaac Saper
Hanchen Zhao (double major with Biochemistry)

Computer Science

Kenneth William Foner
Huy Quang Mai
Grady Berry Ward (double major in Mathematics)

Mathematics

Cameron Zhang Fen
Trevor Weiss Kafka
Linda Li
Huy Quang Mai
Stefan Stanojevic
Zhengyang Zhou
Daniel Jackson Kutner (double major in Physics)
Murielle Claire Tugendhaft
Grady Berry Ward (double major in Computer Science)

Neuroscience

Jessica Allison Haley (double major with Psychology)
Kiera Gillian Sarill (double major with Psychology)

 

Physics

Wei Zhong Goh
Stefan Stanojevic
Daniel Jackson Kutner

Psychology

Kyra Jordana Borenstein
Hannah Dvorah Caldwell
Nicole Danielle Cardona
Avi David Cohen
Annie Cui
Jason Michael Desimone
Emily Rose Friedman
Jonathan David Gilman
Clara Emily Gray
Cecilie Gromada
Sarah Jessica Hack-Chabot
Jessica Allison Haley (double major with Neuroscience)
Jessica Lynn Lieberman
Danielle Mizrachi
Emily April Mostow
Linda Sue Nakagawa
Talia Michelle Portal
Jenna Louise Rice
Kiera Gillian Sarill (double major with Neuroscience)
Aliza Naomi Shapiro

See full story on BrandeisNow.

Undergraduate Lab Tours Begin

Are you an undergraduate interested in gaining research experience by working in a lab at Brandeis? Not sure how to find a lab to work in?

The Biology Undergraduate Department Representative (UDRs) have created the Lab Tour Program. The first tour was held on Monday, April 13th. Lead by Biology junior, Sarita Biswas ’16, undergraduates toured the Dorothee Kern, Daniel Oprian and Chris Miller labs. Although a Biology major, Sarita has worked in Kern’s Biochemistry lab for nearly a year. During the tour, students were shown lab equipment and specialized research rooms (cold room, autoclave room) in the Volen Center. Throughout the tour, Sarita discussed the research that is being done in the labs.

Following the tour, Rashieda Pugh ’16 (UDR) and Sarita sat down with the students. Sarita discussed the kind of projects that she has worked on in the past year. Both Sarita and Rashieda shared their experiences in finding a suitable lab to work in, how they find a project to work on once in the lab, and the time commitment during the summer and academic year.

Some of the many questions asked:

  • Will there be a someone there to guide me? There is always a graduate student or postdoc mentoring you.
  • How do you find a lab to work in? Review the faculty webpages, find research that interests you and then email the professors. Do not write all the professors a generic email about opportunities in their lab. It’s unlikely to work. Take the time to find out what kind of research goes on in each lab. Target labs in which you have a genuine interest. Be prepared to show up in person and talk intelligently about research projects with the faculty member. Be prepared to emphasize what you have to offer – skills acquired in courses or other jobs, your dedication and willingness to apply yourself, your reliability and punctuality, your ability to communicate clearly and concisely, etc.
  • Is lab research considered an internship? Yes, it is very much like an internship.

Their advice is that there are a lot of labs here at Brandeis and a lot of ways to find rewarding research experience in a lab!

The Lab Tour continues on April 16th.

Rachel Woodruff Promoted to Assistant Professor

Rachel WoodruffRachel Woodruff has been promoted to Assistant Professor of Biology. Rachel joined the Brandeis faculty almost three years ago as an Instructor in Biology. During this time, Rachel has taught several Biology courses for undergraduate and Master’s students and recently guided Biology students as an Undergraduate Advising Head.

James Morris, Associate Professor, recently detailed Rachel’s importance to the Brandeis community:

“Rachel teaches courses for biology majors and non-majors. She regularly teaches Biology 14a-Genetics and Genomics, which is part of the introductory biology sequence. This course is taken by many first and second-year students. In addition, she teaches upper-level courses focusing on DNA damage and repair, as well as cancer, drawing on her research experience on DNA damage in bacteria and yeast. These classes include Biology 150b DNA Research and Mechanisms and Biology 172b Growth Control and Cancer. These seminar-style classes include opportunities to read and interpret scientific papers. She also teaches Biology 101b Molecular Biotechnology for advanced undergraduate and Master’s students, introducing students to techniques in molecular biology and teaching students to write their own research proposals. Finally, she teaches BISC 9b Biology of Cancer for non-majors, introducing this important topic to students in an accessible and engaging way.”

 

Protected by Akismet
Blog with WordPress

Welcome Guest | Login (Brandeis Members Only)