Yoshinori Ohsumi to Receive Rosenstiel Award Wednesday, April 6

ohsumi220Biologist Yoshinori Ohsumi will receive the 45th Rosenstiel Award for Distinguished Work in Biomedical Science this Wednesday, April 6th at 4:00 pm in Gerstenzang 123. At that time, he will present a lecture titled, “Lessons from yeast: Cellular recycling system, autophagy”.

Ohsumi is a cell biologist and professor at the Tokyo Institute of Technology’s Frontier Research Center in Japan. He is one of leading experts in the world on autophagy, a process that allows for the degradation and recycling of cellular components. The Rosenstiel Award is being given to Ohsumi in recognition of his pioneering discoveries in autophagy.

Learn more about Professor Ohsumi and his research at BrandeisNow.

Tissue-specific tagging of endogenous proteins in the fruit fly

Seeing is believing, and fluorescently tagged proteins have ushered in a major revolution in cell biology. Instead of observing the static components of dead cells fixed in plastic and reacted with dyes, tagged proteins fluorescing a variety of colors can be tracked in real time in live cells and organisms. We can peek at the previously only imaginable perpetual dynamism of life at the molecular level. In addition to turning us into spell-bound voyeurs, well-defined fluorescent tags also give us a hand-hold to isolate the binding partners of proteins of interest.

In a recent article by the Rodal lab reported in Biology Open, the authors report a new tagging methods designed to get rid of technological artifacts that can cause fluorescently tagged proteins to be expressed at the wrong time and place, and at the wrong levels. By using CRISPR mediated gene editing in fruit flies, they developed a novel approach to visualize any protein of choice in any tissue of choice at the level, localization and time that nature has intended. This method, dubbed T-STEP (for tissue-specific tagging of endogenous proteins), opens up novel experimental avenues to answer long-standing questions in several areas of neuroscience and cell biology, such as: how many different neurotransmitters are expressed in one neuronal circuit? Which tissue-type is a protein expressed in and when? What happens to a disease carrying mutant protein in a tissue of interest at endogenous levels?


As a proof of principle, two endosomal proteins, Vps35 (linked to Parkinson’s disease) and OCRL (linked to Lowe syndrome), which have never before been seen or localized in fruit flies, have now been visualized live at endogenous levels. Moreover, a Parkinson’s disease-specific mutation (D620N) in Vps35 has also been tagged with fluorescent proteins, opening up exciting new research avenues for interrogating binding partners and/or kinetics that may be altered during the diseased states.

In summary, T-STEP is an exciting novel tool that offers a simple and efficient method to tissue-specifically tag any protein at endogenous levels. Authors from the Rodal lab include Kate Koles (Research Scientist) and Anna Yeh ’16.

Lipids hit a “sweet spot” to direct cellular membrane remodeling.

Lipid membrane reshaping is critical to many common cellular processes, including cargo trafficking, cell motility, and organelle biogenesis. The Rodal lab studies how dynamic membrane remodeling is achieved by the active interplay between lipids and proteins. Recent results, published in Cell Reports, demonstrate that for the membrane remodeling protein Nervous Wreck (Nwk), intramolecular autoregulation and membrane charge work together in surprising ways to restrict remodeling to a limited range of lipid compositions.

F-BAR (Fes/Cip4 homology Bin/Amphiphysin/Rvs) domain family proteins are important mediators of membrane remodeling events. The F-BAR domain forms a crescent-shaped α-helical dimer that interacts with and deforms negatively charged membrane phospholipids by assembling into higher-order scaffolds. In this paper, Kelley et al. have shown that the neuronal F-BAR protein Nwk is autoregulated by its C-terminal SH3 domains, which interact directly with the F-BAR domain to inhibit membrane binding. Until now, the dogma in the field has been that increasing concentrations of negatively charged lipids would increase Nwk membrane binding, and thus would induce membrane deformation.

Surprisingly, Kelley et al. found that autoregulation does not mediate this kind of simple “on-off” switch for membrane remodeling. Instead, increasing the concentration of negatively charged lipids increases membrane binding, but inhibits F-BAR membrane deforming activities (see below). Using a combination of in vitro assays and single particle electron microscopy, they found that the Nwk F-BAR domain efficiently assembles into higher-order structures and deforms membranes only within “sweet spot” of negative membrane charge, and that autoregulation elevates this range. The implication of this work is that autoregulation could either reduce membrane binding or promote higher-order assembly, depending on local cellular membrane composition. This study suggests a significant role for the regulation of membrane composition in remodeling.

Brandeis authors on the study included Molecular and Cell Biology graduate students Charlotte Kelley and Shiyu Wang, staff member Tania Eskin, and undergraduate Emily Messelaar ’13 from the Rodal lab; postdoctoral fellow Kangkang Song, Associate Professor of Biology Daniela Nicastro (currently at UT Southwestern), and Associate Professor of Physics Michael Hagan.

Kelley CF, Messelaar EM, Eskin TL, Wang S, Song K, Vishnia K, Becalska AN, Shupliakov O, Hagan MF, Danino D, Sokolova OS, Nicastro D, Rodal AA. Membrane Charge Directs the Outcome of F-BAR Domain Lipid Binding and Autoregulation. Cell reports. 2015;13(11):2597-609.

Visualizing a protein decision complex in actin filament length control

Seen at the Gelles Lab Little Engine Shop blog this week, commentary on a new paper in Nature Communicationspublished in collaboration with the Goode Lab and researchers from New England Biolabs.

“Single-molecule visualization of a formin-capping protein ‘decision complex’ at the actin filament barbed end”

Regulation of actin filament length is a central process by which eukaryotic cells control the shape, architecture, and dynamics of their actin networks. This regulation plays a fundamental role in cell motility, morphogenesis, and a host of processes specific to particular cell types. This paper by recently graduated [Biophysics and Structural Biology] Ph.D. student Jeffrey Bombardier and collaborators resolves the long-standing mystery of how formins and capping protein work in concert and antagonistically to control actin filament length. Bombardier used the CoSMoS multi-wavelength single-molecule fluorescence microscopy technique to to discover and characterize a novel tripartite complex formed by a formin, capping protein, and the actin filament barbed end. Quantitative analysis of the kinetic mechanism showed that this complex is the essential intermediate and decision point in converting a growing formin-bound filament into a static capping protein-bound filament, and the reverse. Interestingly, the authors show that “mDia1 displaced from the barbed end by CP can randomly slide along the filament and later return to the barbed end to re-form the complex.” The results define the essential features of the molecular mechanism of filament length regulation by formin and capping protein; this mechanism predicts several new ways by which cells are likely to couple upstream regulatory inputs to filament length control.

Single-molecule visualization of a formin-capping protein ‘decision complex’ at the actin filament barbed end
Jeffrey P. Bombardier, Julian A. Eskin, Richa Jaiswal, Ivan R. Corrêa, Jr., Ming-Qun Xu, Bruce L. Goode, and Jeff Gelles
Nature Communications  6:8707 (2015)

The capping protein expression plasmid described in this article is available from Addgene.

Readers interested in this subject should also see a related article by Shekhar et al published simultaneously in the same journal.  We are grateful to the authors of that article for coordinating submission so that the two articles were published together.

Tenure-track positions in Biology (application deadline Oct 15)

The Biology Department at Brandeis University invites applications for up to two full-time, tenure-track appointments, beginning Fall 2016, from individuals who are conducting innovative research in the broad areas of molecular and cellular biology. Junior and more senior investigators will be considered, but preference will be given to hiring at the Assistant Professor level. Areas of interest range across molecular genetics, genomics and cell biology, including topics such as RNA biology, cytoskeleton, intracellular transport, development, signal transduction, transcriptional and post-transcriptional regulation, membrane biology, and epigenetics.

The research environment at Brandeis is highly collaborative, and we seek colleagues who will complement and extend existing strengths. Brandeis offers world-class research in the setting of a small liberal-arts university. Brandeis is located 7 miles from Boston, and is part of the vibrant research community of the greater Boston area.

Brandeis recognizes that diversity in its student body, staff and faculty is important to its primary mission of providing a quality education. The search committee is therefore particularly interested in candidates who, through their research, teaching and/or service experiences, will increase Brandeis’ reputation for academic excellence and better prepare its students for a pluralistic society.

To apply, please provide the following: a cover letter, a curriculum vitae, a summary of your research accomplishments to date, including a statement of your goals for future independent research (3-page limit), up to three publications, and at least three letters of reference. Applications will be accepted only through AcademicJobsOnline at https://academicjobsonline.org/ajo/jobs/6064.

First consideration will be given to applications received by October 15, 2015. Following an initial evaluation by the search committee, finalists will be invited to visit the campus to discuss their research and to meet with faculty and students/postdocs. Additional inquiries may be directed to Leslie Griffith or to Paul Garrity.

Brandeis University is an equal opportunity employer, committed to supporting a culturally diverse intellectual community. Applications are particularly encouraged from applicants of groups underrepresented in the sciences.

Patching Up Broken Chromosomes

Olga Tsaponina and James Haber’s recent paper “Frequent Interchromosomal Template Switches during Gene Conversion in S. cerevisiae” was published online by Molecular Cell on July 24, 2014.

by James Haber

“The process of copying DNA every time our cells divide is exceptionally accurate, but in copying 6,000,000,000 base pairs of the genome mistakes do occur, including both mutations and the formation of chromosome breaks. These breaks must be repaired to maintain the integrity of our chromosomes.  In our recent paper we have demonstrated that the mechanism of patching up a broken chromosome is associated with a surprisingly high level of alterations of the sequence.  Many of these changes result from “slippage” of the DNA polymerases copying the DNA during the repair process; for example in copying a sequence of 4 Gs, the polymerase occasionally jumps over one, to lose a base from the sequence (a frameshift mutation).

graphical_abstract_350In this paper we focused on more dramatic slippage events in which the copying machinery jumped from one chromosome to a related but divergent sequence on another chromosome and then jumped back, creating a chimeric sequence.  These interchromosomal template switches (ICTS) occur at a low rate when the distant sequence is only 71% identical, but if we make that segment 100% identical we could find such jumps 10,000 times more frequently, in about 1 in 300 events.  This result reveals how unstable the copying machinery in DNA repair is compared to normal DNA replication. This was very surprising and provides an explanation for many complex rearrangements associated with cancers.  In carrying out this work we identified the first protein that is needed to permit these frequent jumps: a chromatin remodeling enzyme known as Rdh54 that previously did not have a well-defined role in DNA repair in somatic cells.

Finally, we learned a new role for the proteins that survey the genome for mismatched bases that arise during replication and found that one of these proteins, Msh6, is required to specify which strand of DNA containing a mismatch is the “good one” that should be used as the template to correct the mismatch.

This work was supported by the National Institutes of Health General Medical Institute”.

A Cellular Rocket Launcher links Actin, Microtubules, and Cancer

Cells contain thousands of protein “micromachines” performing a bewildering number of chemical reactions every second. The challenge for biologists in the 21st century is to integrate information about multiple – or even all – proteins into holistic models for the entire cell. This is a daunting task. The addition of any new component to a system can alter the behavior of the components already there. This phenomenon is especially familiar to biologists studying the cytoskeleton, a complex system of protein filaments that provide the force for cell division and migration, among other things. The building blocks of the cytoskeleton are simple proteins called tubulin and actin that assemble into a remarkable variety of shapes depending on context. While the basic chemistry of this assembly process has been understood in purified systems for decades, how it happens in cells is not well understood. For example, growth of actin filaments is a two-step process: nucleation, or the formation of a new filament, and elongation, or the extension of that existing filament. Both steps happen just fine when actin is present in pure form in a test tube. In cells, however, proteins called profilin and capping protein block these two steps, respectively. Nucleation and elongation can only occur because other proteins overcome these blocks. Thus, a faithful experimental system to study actin assembly as it would occur in a living cell requires – at a minimum – five purified proteins.

One technological advance of great importance is the ability to literally see single molecules (in this case proteins) using advanced fluorescence imaging. In such an experimental system, many details can be captured. In a recent publication in Science, Dr. Dennis Breitsprecher and colleagues in the Goode and Gelles labs, undertook this challenge and directly visualized the effects of key regulatory proteins helping actin proteins nucleate and grow into filaments in the presence of both profilin and capping protein. A previous study from the Goode lab had shown that two proteins, called APC and mDia1, together stimulate the growth of actin into filaments (Okada et al, 2010). In the present study, Breitsprecher and colleagues examined the mechanism by which APC and mDia1 overcome the profilin and capping protein-imposed blocks. To do this, they ‘tagged’ actin, APC and mDia1 with three different fluorescent dyes, each of a different color, and then filmed these molecules (using triple-color TIRF microscopy) in the act of building an actin filament to learn precisely what they are doing.

The authors began by imaging APC and actin (2 colors) at the same time. APC formed discrete spots on the microscope slide, and growing actin filaments emerged from them, suggesting than APC nucleates actin filament formation. As the filament emerged from the APC spot, APC stayed where it was: remaining stably associated at the site of nucleation. Next, the authors added dye-labeled mDia1 to the system, and observed mDia1 molecules staying attached to and ‘riding’ the fast-growing end of actin filament, while protecting it from capping protein.

The most remarkable result came when they visualized all three labeled molecules together (actin, APC, and mDia1). What they saw was that APC and mDia1 first come together in a stable complex even before actin arrives. Then APC recruits multiple actin subunits to initiate the nucleation of a filament. This complex was resistant to the blocks imposed by both profilin and capping protein. As the filament grew from the APC-mDia1 spot, mDia1 separated from APC and stayed bound to the growing end of the filament – protecting it from capping protein while it grows. Thus, even though APC and mDia1 have different activities, participating in different stages of the growth of a filament, they associate together before actin even arrives, likely so that once the actin filament is born, it is immediately protected from capping protein. This mechanism has been compared to a rocket launcher: APC is the launch pad for an actin filament, which is then propelled forward by mDia1.

Rocket launcher images and cartoon

Rocket launcher mechanism for APC and mDia1 nucleation. Left: Microscopic image of a growing actin filament. APC stays put while mDia1 remains associated with the fast growing end. Right: Model for the rocket launcher mechanism.

The new study provides great detail of the system: for example, the number of APC subunits required to nucleate actin filaments was determined, and the growth rate of actin filaments in the presence and absence of all the other components was measured. Ultimately, all of these data will be required to put together a detailed model of how actin filaments grow inside of real cells: details that would be difficult or impossible to obtain without employing single molecule analysis.

For the future, the authors have set their sights on even more challenging experiments aimed at elucidating the mysterious link between tubulin and actin fibers. APC and mDia1 are implicated in this linkage in living cells, but almost nothing is known about how they physically link and/or communicate information between the two systems. Since APC is mutated in some 80% of colon cancer tumors, understanding its multiple roles is of clinical as well as intellectual importance. This will be an exciting, if challenging, endeavor for the future.

Rodal to Receive NIH New Innovator Award

The NIH recently announced that Assistant Professor of Biology Avital Rodal will be a recipient of the 2012 NIH Directors New Innovator Award. The award allows new, exceptionally creative and ambitious investigators to begin high impact research projects. Granted to early stage investigators, candidates are eligible for the award for up to ten years after the completion of their PhD or MD. The award emphasizes bold, new approaches, which have the potential to spur large scientific steps forward. This year’s award was made to fifty-one researchers, and provides each with 1.5 million dollars of direct research funding over five years.

The Rodal lab studies the mechanisms of membrane deformation and endosomal traffic in neurons as they relate to growth signaling and disease. Membrane deformation by a core set of conserved protein complexes leads to the creation of tubules and vesicles from the plasma membrane and internal compartments. Endocytic vesicles contain, among other cargoes, activated growth factors and receptors, which traffic to the neuronal cell body to drive transcriptional responses (see movie). These growth cues somehow coordinate with neuronal activity to dramatically alter the morphology of the neuron, and disruptions to both endocytic pathways and neuronal activity have been implicated in neurodegenerative diseases such as amyotrophic lateral sclerosis and Alzheimer’s disease.

Dr. Rodal hopes to determine how neuronal activity affects the in vivo function and biochemical composition of the membrane trafficking machinery, by examining the transport of fluorescently labeled growth factor receptors in chronically or acutely activated neurons at the Drosophila neuromuscular junction (NMJ). Her group will combine these live imaging studies with a proteomic analysis of endocytic machinery purified from hyper-activated and under-activated neurons. By investigating the interplay between neuronal activity, membrane deformation, and receptor localization in live animal NMJs, she hopes to gain a better understanding of the strategies that healthy neurons employ to regulate membrane trafficking events, and provide new insight into specific points of failure in neurodegenerative disease.

Protected by Akismet
Blog with WordPress

Welcome Guest | Login (Brandeis Members Only)