3D electron microscopy reveals: twin spokes are not twins

Movement of cells has fascinated scientists for centuries. Improved handcrafted light microscopes in the late 17th century allowed observations of contracting muscle fibers, single-cell organisms gliding through water drops or cells crawling across surfaces. How cell motility is generated and regulated is an ongoing question researchers at Brandeis and many other institutions are trying to answer. The single-cell green algae Chlamydomonas reinhardtii has two eukaryotic flagella (Fig. A) and is a popular genetic model system for studying these motile organelles, which are also called cilia or undulipodia. Cilia and flagella are basically the same organelles that are highly similar from single-cell algae to humans, but when a cell has many relatively short and asymmetrically beating ones they are called cilia (e.g. on the multi-ciliated epithelial cells that line our airways and are important for mucus-clearance), while a few long ones with often symmetric waveforms are called (eukaryotic) flagella (e.g. the sperm flagellum). These should not be confused with bacterial and archaeal flagella, which are very different in structure and evolutionary origin. Eukaryotic cilia and flagella consist of a microtubule-based, cylindrical core with hundreds of similar building blocks that repeat along the length of the organelle (Fig. B-D). In a single flagellum the activity of thousands of motor proteins, dyneins, has to be coordinated to generate motility, and important regulatory complexes include the radial spokes, in Chlamydomonas two spokes per building block (RS1 and RS2) (Fig. D). Recently, Dr. Thomas Heuser, a postdoc in Dr. Daniela Nicastro’s lab at Brandeis, successfully used three-dimensional electron microscopy (electron tomography) to study the structure of rapidly frozen Chlamydomonas flagella in unprecedented detail (Heuser et al. 2009).

Erin Dymek from Dr. Elizabeth Smith’s laboratory at Dartmouth College found that the concentration of Calcium ions, a known regulatory signal modulating ciliary and flagellar motility, affects dynein activity through a conserved Calmodulin and Radial Spokes associated Complex (CSC) (Dymek and Smith, 2007). Erin Dymek and Elizabeth Smith have now teamed up with Tom Heuser and Daniela Nicastro to study the 3D location of this Calcium sensing complex in flagella. In a recent paper (Dymek et al. 2011 MBoC in press) they compared the wild type structure of Chlamydomonas flagella to several artificial microRNA-interference mutants lacking parts of the CSC. They found that in all amiRNAi mutants many of the flagellar building blocks were missing one specific radial spoke, RS2, while RS1 was always present (Fig. E-G), suggesting that the Calcium sensing CSC is located at or near RS2. Interestingly, RS1 and RS2 were previously assumed to be structurally identical, their different numbering simply referred to their proximal and distal location within the repeating building block. The current study not only indicates that the CSC is required for spoke assembly and wild type motility, but as one of the most surprising outcomes it also provides evidence for heterogeneity among the radial spokes, at least at the base where the spokes are anchored to the microtubules. The same team of biologists is now continuing to study the CSC location in the flagellar building block in greater detail by improving image processing strategies to increase resolution.

Physics students present research at 20th Annual Berko Symposium on May 16

On Monday, May 16, the Physics Department will hold the Twentieth Annual Student Research Symposium in Memory of Professor Stephan Berko in Abelson 131. The symposium will end with talks by the two Berko Prize winning students, undergraduate Netta Engelhardt and graduate student Tim Sanchez. The whole department then gathers for a lunch of cold cuts, cookies and conversation. “It’s a great way to close out the academic year,” said Professor of Astrophysics and Department Chair John Wardle. “We come together to celebrate our students’ research and hear what the different research groups are doing.”

The undergraduate speakers will describe their senior thesis honors research. This is the final step in gaining an honors degree in physics, and most of them will also be co-authors on a paper published in a mainline science journal. The graduate student speakers are in the middle of their PhD research, and will disucss their progress and their goals.

The prize winners are nominated and chosen by the faculty for making particularly noteworthy progress in their research. Graduate student winner Sanchez’ talk is titled “Reconstructing cilia beating from the ground up.” He works in Professor Zvonimir Dogic’s lab studying soft condensed matter. Undergraduate winner Engelhardt’s talk is titled “A New Approach to Solving the Hermitian Yang-Mills Equations”. She works with Professors Matt Headrick and Bong Lian (Math) on problems in theoretical physics and string theory. The schedule for Monday morning and abstracts of all the talks can be found on the Physics Department website.

Sanchez’ research very much represents the growing interdisciplinary nature of science at Brandeis. Here, a physicist’s approach is used to study a biological organism. Professor Zvonimir Dogic says of his work “He has made a whole series of important discoveries that are going to have a measurable impact on a number of diverse fields ranging from cell biology, biophysics, soft matter physics and non-equilibrium statistical mechanics.  His discoveries have fundamentally transformed the direction of my laboratory and probably of many other laboratories as well.”

Engelhardt’s research is much more abstract and mathematical, and concerns fundamental problems in string theory, not usually an area tackled by undergraduates. Professor Headrick says “Netta really, really wants to be a theoretical physicist, preferably a string theorist. She has a passion for mathematics, physics, and the connections between them.” He adds that she is utterly fearless in tackling hard problems. Netta has been awarded an NSF Graduate Research Fellowship based on her undergraduate work here.  Next year she will enter graduate school at UC Santa Barbara and will likely work with eminent string theorist Gary Horowitz, who has already supervised the PhD research of two other Brandeis physics alumni, Matthew Roberts ’05, and Benson Way ’08.

This Student Research Symposium is now in its 20th year. The “First Annual…..” (two words which are always unwise to put next to each other) was initiated in 1992 by Wardle to honor Professor Stephan Berko, who had died suddenly the previous year. Family, friends and colleagues contributed to a fund to support and celebrate student research in his memory. This provides the prize money which Netta and Tim will share.

Stephan Berko was a brilliant and volatile experimental physicist who was one of the founding members of the physics department. He was born in Romania in 1924 and was a survivor of both the Auschwitz and Dachau concentration camps. He came to the United States under a Hillel Foundation scholarship and obtained his PhD at the University of Virginia. He came to Brandeis in 1961 to establish a program in experimental physics and worked tirelessly to build up the department. Together with Professors Karl Canter (dec. 2006) and Alan Mills (now at UC Riverside) he established Brandeis as a world center for research into positrons (the anti-matter mirror image of ordinary electrons). In a series of brilliant experiments they achieved many “firsts,” culminating in election to the National Academy of Sciences for Steve, and, it has been rumored, in a Nobel Prize nomination for the three of them. Steve was as passionate about teaching as he was about research, and when he died, it seemed most appropriate to honor his memory by celebrating the research of our graduate and undergraduate students. During the coffee break on Monday, we will show a movie of Steve lecturing on “cold fusion,” a headline-grabbing but phony claim for producing cheap energy from 1989.

Postdoctoral position: functional organization of cilia and flagella using molecular genetic approaches

A postdoctoral position is immediately available in the laboratory of Dr. Nicastro at Brandeis University to study the functional organization of cilia and flagella using molecular genetic approaches.

Our lab has in the past mainly been focused on high-resolution structural studies of these highly conserved organelles and defects in mutants, as well as the cytoskeleton and molecular motor in general. One of our long-term goals is to better understand ciliary diseases and identify therapeutic targets. Recently we have expanded our expertise in biochemistry and we are now seeking to complement our highly interactive team with an expert in genetics.

Applicants should have a PhD degree, a strong background in molecular biology/genetic techniques, and an edge for technology development. Responsibilities will include the establishment of a new model organism optimized for reverse genetics to target complexes in cilia and flagella. Familiarity with RNAi and one of the following model organisms is a plus, but not required: Chlamydomonas or Tetrahymena or Planaria. The candidate should be team-oriented and have excellent oral and written communication skills.
The position is available April 1st for up to three years with the possibility of extension. Interested candidates should send an application, including a CV, areas of expertise and interest, publications list, and names and contact information for 3 references to:

Dr. Daniela Nicastro
MS 029
Rosenstiel Center
Brandeis University
415 South Street
Waltham, MA 02454, USA.

The Nicastro Lab is located in the well-equipped and vibrant Biology Department of Brandeis University in Waltham, Massachusetts (eight miles west of Boston). Brandeis has a state-of-the-art electron microscopy facility, a newly implemented facility for Correlative Light and Electron Microscopy and an extensive computational facility. Life Science Research is highly collaborative and interdisciplinary at Brandeis, and offers excellent opportunities for scientific interaction on campus and other scientific institutions in the Boston area. Brandeis University is committed to diversity and equality in education and employment.

Protected by Akismet
Blog with WordPress

Welcome Guest | Login (Brandeis Members Only)