Tenure-track faculty position in Neuroscience and Psychology

The Department of Psychology at Brandeis University invites applications for a tenure-track assistant professor position to begin in Fall 2014.  The position includes an appointment to the Neuroscience Program and to the Volen National Center for Complex Systems.  We seek an individual with an active research program that combines systems neuroscience and psychological approaches to understanding behavior and mental processes; the preferred specialty areas are learning and development, but we are open to other sub-specialties.  The position is open to applicants working with human and/or non-human animals who have shown outstanding promise as a researcher and mentor.  The successful applicant will join a vibrant research department with NIH training grants, entitled “Brain-Body-Behavior Interface in Learning and Development Across the Lifespan” and “Training in Cognitive Aging in a Social Context.”  Teaching duties will include Psychology and Neuroscience courses.  Applications, which should be submitted through AcademicJobsOnline at https://academicjobsonline.org/ajo/jobs/2877 should include a CV, research statement, teaching statement, copies of relevant publications, and three letters of recommendation.  First consideration will be given to candidates whose applications are complete by October 1, 2013 although we will accept applications until the position is filled.
Brandeis University is an equal opportunity employer, committed to building a culturally diverse intellectual community, and strongly encourages applications from women and minority candidates.

notice reposted from the Psychology Dept. website

How seeing can change what you see

We sometimes take it for granted how the way we see enables us to perceive and interact with the world, but how our visual system works is amazing. It’s an intricately choreographed process – from the light that comes into our eyes, to the way that our brains carry that information and form it into an image we can understand. If brain cells are improperly connected during growth and development, or if part of the system is destroyed by injury, all kinds of visual havoc can be a result. But how does a brain get wired properly in the first place?

 In a paper in the Journal of Neuroscience last week, Professor Steve Van Hooser’s lab reported some of the effects of experience on development. The new paper shows evidence that neurons in all layers of the visual cortex aren’t just ‘born’ with the right connections between the parts of the brain that control vision. According to their data, the act of seeing itself makes changes in how the neurons process visual information. The lab is continuing their studies of brain circuits to uncover how, during development, the act of seeing changes how you see.
Clemens JM, Ritter NJ, Roy A, Miller JM, and Van Hooser SD. The Laminar Development of Direction Selectivity in Ferret Visual Cortex. J. Neurosci. 12 December 2012, 32(50): 18177-18185. 

Claude Desplan to speak in Bauer Distinguished Lecturer Series

Claude Desplan, Silver Professor and Professor of Biology at NYU, will visit Brandeis the week of March 21-25 as part of the M.R.Bauer Foundation Distinguished Lecturer Series. Desplan’s work focuses on developmental biology in insects, and is particularly concerned with pattern formation. A recent topic of interest is the development of the neural network that supports color vision in the optic lobe of the fruit fly.

Desplan will speak on Monday, March 21 at 4:00 pm in Gerstenzang 121. The title of his talk will be “Processing of Color Information in Drosophilia”. Desplan will speak again at Neurobiology Journal Club on March 22 at 12:05 pm in Gerstenzang 121.

According to a post at ratemyprofessors.com:

Desplan is the funniest, nicest guy ever. At first you may not be able to understand him too too easily due to his french accent but after a few days that’s not a problem. Desplan went pretty slow and went over concepts that people didn’t seem to understand. Even then he held very helpful review sessions. Great professor.


Turning germline cells into neurons

Piali Sengupta discusses the most recent research in how nerve cells are programmed to develop in “Cellular reprogramming: chromatin puts on the brake“, published in the Feb 22 issue of Current Biology.

Neurons branch out: a role for Rem2

The development of the central nervous system involves a series of complex yet tightly-regulated processes, including the formation of synapses, the sites of communication between neurons, and the morphogenesis of the dendritic arbor, where the majority of synaptic contacts occur. Importantly, the misregulation of these processes is a hallmark of many neurodevelopmental disorders, including autism and mental retardation. However, the molecular mechanisms that underlie these structural and functional changes remain largely obscure.

The lab of Prof. Suzanne Paradis at Brandeis is working to identify and characterize molecules that regulate neural development in the rodent hippocampus. A recently accepted manuscript at Developmental Neurobiology by Brandeis Neurocience Ph.D. student Amy Ghiretti and Dr. Paradis uses RNAi in primary hippocampal cultures to identify novel roles for the GTPase Rem2 in several neurodevelopmental processes. The RNAi-mediated decrease of Rem2 leads to the formation of fewer excitatory synapses, and also results in increased dendritic complexity, suggesting that Rem2 functions normally to promote synapse formation and to inhibit dendritic branching. Additionally, the binding of Rem2 to the calcium-binding protein calmodulin was identified as a key interaction that distinguishes the signaling pathways through which Rem2 mediates synapse development and dendritic branching. Overall, this study identifies Rem2 as a novel regulator of several neurodevelopmental processes, and importantly, suggests that Rem2 regulates excitatory synapse development and dendritic morphology via separable and distinct signaling pathways.

Figure: Neurons in which Rem2 protein expression has been decreased by RNAi (top) show increased dendritic branching compared to control neurons (bottom), suggesting Rem2 acts to inhibit branching

Protected by Akismet
Blog with WordPress

Welcome Guest | Login (Brandeis Members Only)