notice reposted from the Psychology Dept. website
Tenure-track faculty position in Neuroscience and Psychology
How seeing can change what you see
We sometimes take it for granted how the way we see enables us to perceive and interact with the world, but how our visual system works is amazing. It’s an intricately choreographed process – from the light that comes into our eyes, to the way that our brains carry that information and form it into an image we can understand. If brain cells are improperly connected during growth and development, or if part of the system is destroyed by injury, all kinds of visual havoc can be a result. But how does a brain get wired properly in the first place?
Claude Desplan to speak in Bauer Distinguished Lecturer Series
Claude Desplan, Silver Professor and Professor of Biology at NYU, will visit Brandeis the week of March 21-25 as part of the M.R.Bauer Foundation Distinguished Lecturer Series. Desplan’s work focuses on developmental biology in insects, and is particularly concerned with pattern formation. A recent topic of interest is the development of the neural network that supports color vision in the optic lobe of the fruit fly.
Desplan will speak on Monday, March 21 at 4:00 pm in Gerstenzang 121. The title of his talk will be “Processing of Color Information in Drosophilia”. Desplan will speak again at Neurobiology Journal Club on March 22 at 12:05 pm in Gerstenzang 121.
According to a post at ratemyprofessors.com:
Desplan is the funniest, nicest guy ever. At first you may not be able to understand him too too easily due to his french accent but after a few days that’s not a problem. Desplan went pretty slow and went over concepts that people didn’t seem to understand. Even then he held very helpful review sessions. Great professor.
Turning germline cells into neurons
Piali Sengupta discusses the most recent research in how nerve cells are programmed to develop in “Cellular reprogramming: chromatin puts on the brake“, published in the Feb 22 issue of Current Biology.
Neurons branch out: a role for Rem2
The development of the central nervous system involves a series of complex yet tightly-regulated processes, including the formation of synapses, the sites of communication between neurons, and the morphogenesis of the dendritic arbor, where the majority of synaptic contacts occur. Importantly, the misregulation of these processes is a hallmark of many neurodevelopmental disorders, including autism and mental retardation. However, the molecular mechanisms that underlie these structural and functional changes remain largely obscure.
The lab of Prof. Suzanne Paradis at Brandeis is working to identify and characterize molecules that regulate neural development in the rodent hippocampus. A recently accepted manuscript at Developmental Neurobiology by Brandeis Neurocience Ph.D. student Amy Ghiretti and Dr. Paradis uses RNAi in primary hippocampal cultures to identify novel roles for the GTPase Rem2 in several neurodevelopmental processes. The RNAi-mediated decrease of Rem2 leads to the formation of fewer excitatory synapses, and also results in increased dendritic complexity, suggesting that Rem2 functions normally to promote synapse formation and to inhibit dendritic branching. Additionally, the
binding of Rem2 to the calcium-binding protein calmodulin was identified as a key interaction that distinguishes the signaling pathways through which Rem2 mediates synapse development and dendritic branching. Overall, this study identifies Rem2 as a novel regulator of several neurodevelopmental processes, and importantly, suggests that Rem2 regulates excitatory synapse development and dendritic morphology via separable and distinct signaling pathways.
Figure: Neurons in which Rem2 protein expression has been decreased by RNAi (top) show increased dendritic branching compared to control neurons (bottom), suggesting Rem2 acts to inhibit branching