Raul Ramos Pays It Forward in His Home State of Texas


photo credit: Simon Goodacre

Helen Wong | Graduate School of Arts and Sciences

Raul Ramos, a fourth-year Ph.D. candidate in Neuroscience, spent the five-hour flight from Boston to Austin, Texas trying to think of what to say to a classroom full of adolescents who had been sentenced to juvenile detention, like he had been once when he was a teenager.

“I was trying to get into the mindset of it all,” he says of those nerve-wracking hours before arriving in Austin. “I was trying to remember how I felt when I had been in their shoes.” He had put together a talk and a script, but the moment he entered the first classroom at the Austin Alternative Learning Center, all of it went out the window. “Instead of giving a lecture, I had an actual conversation with the kids,” says Ramos. “They could relate to me. I was someone who looked like them, talked like them, moved like them. So they listened when I told them about my story and how, despite what they were facing now, their outcomes could be different too.”

Ramos first started working with high school students after he moved to Waltham. Anique Olivier-Mason PhD’12, Director of Education, Outreach and Diversity at the Materials Research Science and Engineering Center had arranged “Pizza Talks,” a program where graduate students in the sciences visit classrooms at Waltham High School and discuss their decisions to pursue careers in science, their experiences as investigators and their research. The program has been a great success and now serves as the model for similar talks taking place nationally, sponsored by the American Association for the Advancement of Science (AAAS). Ramos volunteered to give a talk when he first heard about the program.

“Waltham High has a large Hispanic student population,” says Ramos. “These groups underrepresented in science. I really liked going to speak to them and talking about my own journey and its relation to my identity.” AAAS became aware of this community outreach and contacted the university to learn more. Ramos has always been open about the troubles in his own past, so when AAAS were looking for scientists to speak to students in alternative learning centers in Austin, they asked him if he would like to go. “I said yes, of course,” says Ramos. “I’m from Texas originally, so I agreed to fly down and talk to the kids.”

What began as originally just one or two schools became six upon his arrival in Austin as word got around of his visit. During the trip, Ramos gave sixteen talks and spoke to around two hundred students. “I went to juvie centers, alternative learning centers, drug rehabilitation facilities,” he says. “The level of engagement was amazing. For every kid that didn’t want to engage, there were a few more who wanted to talk to me and learn about how I’d gotten to where I am. One of the most frequent questions they asked me was, ‘Sir, what do I do when I get out of here?’ and I would tell them the truth. I told them that once they got out, they would have to actively avoid situations and people that would get them in trouble. I said that if that meant having to hole up in their room to study and get away from it all, then doing that would absolutely be worth it in the long run. Their environment matters.”

But even after telling them his advice, Ramos knew that advice alone wasn’t going to be enough for many of the kids he was speaking to. “You need a support network,” he says. “A lot of these kids don’t have that. Some of them are safer in detention than at home. So many of them are angry–why wouldn’t they be? They’re supposed to become upstanding members of society, but the way the system goes about that is to lock them up and isolate them. That’s not how rehabilitation should work.”

At some of the facilities he visited, Ramos saw kids as young as eleven or twelve being escorted by armed guards from classroom to classroom despite some of them being barely half his size. For Ramos, the sight was jarring. “It looks like overkill,” says Ramos. “I know they’re here because they did something wrong, but at the end of the day, they’re just kids.”

It also struck Ramos, as he made the rounds in each facility, that the kids incarcerated at these centers were all people of color despite Austin being in a majority white part of Texas. “Brandeis is all about recruiting underrepresented minorities into its science programs,” he says. However, the challenges of recruiting students of color for doctoral programs in science are significant, and Ramos realized during his trip to Texas that “part of the reason for the absence of black and brown individuals in science was that so many of them, who could potentially be scientists someday, are stuck in juvie–stuck in environments that deprive them of opportunities and healthy role models.

“And people like me that manage to get an education, we make it out and we leave. We come over here to go to college, we leave Laredo [Ramos’ hometown], and these kids don’t get to have good role models. They make mistakes fueled by a terrible home environment and get stuck in the juvie-to-prison pipeline. They repent and feel bad in juvie, but once they get out, if they don’t have a support network, it starts all over again. The system tries them as full adults at seventeen, when they’re not even old enough to vote. Things have to change. I want to help make that happen and to show them that right now, there are still opportunities open to them.”

Despite all of the system’s shortcomings, the alternative learning centers and similar institutions are making a tangible difference. “The system’s not perfect,” says Ramos. “It’s deeply flawed. But things are already better now than when I was in. Back then, I was put in what would conventionally be considered a prison cell. At least most of these kids get an education, space to walk, and are surrounded by people who care about them. Everyone working at the Austin Alternative Learning Center was so motivated and clearly cared about the kids.”

Upon his return to Brandeis, Ramos decided that he would dedicate more time to community outreach and consider the possibility of working in science policy after earning his doctorate. He wants to do work that not only has value in the scientific world, but that also actively helps bolster diversity and inclusion in the field, helping fight back against larger societal and institutional structures that disadvantage people of color.

“We need representation to show kids that the journey is possible,” says Ramos. “The cards feel like they’re stacked almost the entire way through. I’m going to do whatever I have to do to get the message out there to those kids who are hardest to reach and who need to hear from us the most.”

Brandeisians Receive 2018 NSF Graduate Research Fellowships

NSF Graduate Research FellowshipFive Brandeisians (past and present) have received NSF Graduate Research Fellowships for 2018. Also, one current graduate student received an honorable mention.

This program recognizes and supports outstanding graduate students in NSF-supported STEM disciplines who are pursuing research-based advanced degrees at U.S. institutions. In 2018, the National Science Foundation (NSF) received over 12,000 applications, and made 2,000 award offers. This fellowship provides three years of financial support within a five-year fellowship period ($34,000 annual stipend and $12,000 cost-of-education allowance to the graduate institution).

Alyssa Garcia, a Brandeis Physics graduate student, received a fellowship. Marcelle Soares-Santos, Assistant Professor of Physics, is Alyssa’s advisor. Marcelle said “Alyssa will work on obtaining a sample of neutron star collisions with the goal of using them as standard sirens to determine the rate of expansion of the Universe.  This is very timely after the discovery of the groundbreaking neutron star collision GW170817 as the gravitational wave detectors are now being upgraded and when they come back later this year, they are expected to yield almost 10 times more detection’s per year. That wealth of data, is a very exciting prospect for a student starting their PhD career!”

Christopher Konow, a Ph.D. candidate in Chemistry, received an honorable mention. He works in the Irving Epstein lab analyzing the Turing Pattern formation in Growing Domains using the CDIMA (chlorine dioxide-iodine-malonic acid) chemical reaction.  For the NSF GRF, he proposed developing a novel self-oscillating hydrogel that could have uses in drug delivery.  He plans to start this project in late summer/early fall of 2018.

The Brandeis undergraduate alumni receiving 2018 NSF GR fellowships are:

  • Caroline Cappello graduated in 2011 with a bachelor’s degree in Environmental Studies and Theater Arts. She is a Ph.D. student in the Department of Biology at the University of Washington.
  • Emma Chad-Friedman received a BA in Psychology and Anthropology in 2014 and is in the PhD. Psychology program at the University of Maryland at College Park.
  • Jung Park also graduated in 2014 with a degree in Neuroscience and Psychology. He is currently a Ph.D. student in Neurobiology and Behavior at Columbia University.
  • Stanislav Popov received his B.S. degree in Mathematics and Chemistry only 2 years ago (2016). While at Brandeis, Stanislav worked in Isaac Krauss’ lab. He is pursuing a Ph.D. in Chemistry at UCLA.

Physics Graduate Student Receives Kavli Fellowship

Cesar Agon at Kavli Institute Cesar Agon, a graduate student in the High-Energy and Gravitational Theory group, was awarded a prestigious Graduate Fellowship at the Kavli Institute for Theoretical Physics (KITP) at the University of California, Santa Barbara. KITP is one of the world’s leading centers for research in all areas of theoretical physics. In addition to having its own faculty and postdocs, it hosts visiting faculty from around the world and holds conferences and semester-long programs on topics of current interest. The Graduate Fellowship program allows exceptional students to benefit from this activity and the scientific ambience of KITP by spending a semester there. This is a very competitive program, with only about half a dozen students coming from around the world each semester. Agon, who is advised by Profs. Matthew Headrick, Albion Lawrence, and Howard Schnitzer, is currently spending the spring term at KITP, before heading off to Stony Brook University as a postdoc in the fall.

Back in the summer of 2015, Agon had the opportunity to visit KITP during two important programs on the physics frontiers, both of special interest to him, namely ”Entanglement in Strongly-Correlated Quantum Matter” and ”Quantum Gravity Foundations: UV to IR”. That was a great opportunity to meet in person the leaders of the field from around the world in the relaxed and friendly atmosphere of the KITP. Discussions among the researchers and students were tremendously common all around the institute and there were many activities that facilitated such discussions such as daily coffees, lunches, and dinners.

[Read more…]

From PhD to Life

By Craig W. Stropkay, (PhD ’13, Molecular and Cell Biology, Ren lab)

Reach for the stars, they said. You should definitely go get your PhD, you’d be great for it, they said. Well, I guess they did have a point. Pursuing my doctorate degree in Molecular Biology at Brandeis was definitely one of the most challenging things that I have ever had to do in my life. I could spend hours telling you about the long hours I spent trying to construct my dissertation or the countless nights that I had to wake up and drive into the lab from Medford just to “feed” my cells — but that’s not the point of this article. I want to talk about something that I wish was more openly discussed when I first started my journey towards pursuing a PhD. Something that I believe is important to anyone who is currently working their way towards earning their doctoral degree: a job.

Now I know what you may be thinking: why would I need to worry about a job when I know I will continue onto a postdoc and then a tenure-track academic post? Isn’t that what everyone does? That is precisely my point. Don’t get me wrong: there is absolutely nothing wrong with continuing a career in academia upon completion of your doctorate. It takes a lot of patience, skill, and dedication to remain in the field after you have literally spent years becoming an expert in everything dealing with Life Science. Maybe you’ve considered going that route, feeling that your choices are limited. Many people believe that apart from academia, their only “alternative” option is to go into industry and work in biotech or pharma.

Image from Naturejobs article

[Read more…]

The Benefits of Middle Age

Almost all our cells harbor a sensory organelle called the primary cilium, homologous to the better known flagella found in protists. Some of these cilia can beat and allow the cell to move (eg. in sperm), or move fluid (eg. cerebrospinal fluid) around them. However, other specialized cilia such as those found in photoreceptor cells and in our olfactory neurons function solely as sensory organelles, providing the primary site for signal reception and transduction. The vast majority of our somatic cells display a short and simple rod-like cilium that plays crucial roles during development and in adulthood. For instance, during development, they are essential for transducing critical secreted developmental signals such as Sonic hedgehog that is required for the elaboration of cell types in almost every tissue (eg. in brain, bones, muscles, skin). In adults, cilia are required for normal functioning of our kidneys, and primary cilia in hypothalamic neurons have been shown to regulate hunger and satiety.

Given their importance, it is not surprising that defects in cilia structure and function lead to a whole host of diseases ranging from severe developmental disorders and embryonic lethality to hydrocephalus (fluid accumulation in the brain), infertility, obesity, blindness, and polycystic kidney among others. Often these diseases manifest early in development resulting in prenatal death or severe disability, but milder ciliary dysfunction leads to disease phenotypes later in life.

Much is now known about how cilia are formed and how they function during development. However, surprisingly, how aging affects cilia, and possibly the severity of cilia-related diseases, is not well studied. A new study by postdocs Astrid Cornils and Ashish Maurya, and graduate student Lauren Tereshko from Piali Sengupta’s laboratory, and collaborators at University College Dublin and University of Iowa, begins to address this question using the microscopic roundworm C. elegans (pictured below). These worms display cilia on a set of sensory neurons; these cilia are built by mechanisms that are similar to those in other animals including in humans. Worms have a life span of about 2-3 weeks, thereby making the study of how aging affects cilia function quite feasible.

benefits-midage

They find that cilia structure is somewhat altered in extreme old age in control animals. However, unexpectedly, when they looked at animals carrying mutations that lead to human ciliary diseases, the severely defective cilia seen in larvae and young adults displayed a partial but significant recovery during middle-age, a period associated with declining reproductive function. They went on to show that the heat-shock response and the ubiquitin-proteasome system, two major pathways required for alleviating protein misfolding stress in aging and neurodegenerative diseases, are essential for this age-dependent cilia recovery in mutant animals. This restoration of cilia function is transient; cilia structure becomes defective again in extreme old age. These results suggest that increased function of protein quality control mechanisms during middle age can transiently suppress the effects of some mutations in cilia genes, and raise the possibility that these findings may help guide the design of therapeutic strategies to target specific ciliary diseases. Some things can improve with aging!

Introduction to Microfluidics Technology – June 13-17, 2016

2016 MRSEC Summer Course Announcement

Registration for our annual, one-week summer course, “Introduction to Microfluidics Technology” at Brandeis University, near Boston, MA, is now open. The application deadline is March 31, 2016.

Introduction to Microfluidics Technology is a hands-on laboratory course sponsored by the National Science Foundation’s Bioinspired Soft Materials Research Science and Engineering Center (MRSEC) at Brandeis. It will be offered during the week of June 13 ‐ 17, 2016. The course is intended for graduate students, post docs, faculty, and industrial scientists/engineers interested in utilizing microfluidic technology in their work, both in the physical and life sciences. The course does not assume any specific prerequisites.

“Introduction to Microfluidics Technology” (June 13 – 17, 2016)
will be taught by Dr. Nathan Tompkins.

The $750 fee covers course tuition, housing in double-occupancy rooms, and breakfast/lunch/coffee from Monday through Friday. Single rooms are not available. Local students who do not need housing will pay a non-resident fee of $500 (cash and check only please).

More information is available.

Protected by Akismet
Blog with WordPress

Welcome Guest | Login (Brandeis Members Only)