Grace Han and 2 Alumni Receive 2022 Sloan Foundation Fellowships

Grace Han group photo

Grace Han (left) and her group.

The Alfred P. Sloan Foundation has announced the winners of the 2022 Sloan Research Fellowships. These fellowships are awarded to early-career scientists that represent the most promising researchers working today. Winners receive $75,000, which can be used to support their research over a two-year term. Grace Han, Assistant Professor of Chemistry and the Landsman Career Development Chair in the Sciences is one of the 2022 recipients.

The major goal of Dr. Grace Han’s research program is to develop functional organic material systems that exhibit phase transitions triggered by external stimuli, notably light. The photo-controlled phase-change materials have a game-changing potential in waste heat recycling and storage, photo-actuation, photo-lithography, and photo-regulated adhesion. In particular, the novel strategy to optically ‘fix’ a liquid phase under fluctuating temperatures allows for a long-term latent heat storage and a triggered release of energy, which is not attainable by conventional phase-change materials such as paraffins or salt hydrates. To achieve this goal, her team investigates the photo-induced structural and polarity changes of molecular switches based on azobenzene, which reversibly controls the phase of materials.
The Sloan Research Fellowship will support the new direction of Han group’s research in expanding the materials set by the rational design of photoswitches with enhanced optical and thermal properties, which will address the challenges of the current state-of-the-art switches.
Two Brandeis alumni also received 2022 fellowships: Netta Engelhardt, BS ’11 (Physics) and Dapeng Bi, PhD ’12 (Physics).

Han paper describes electrochemical switching of arylazopyrazole & heat release

Research image from paperMihael Gerkman and Prof. Grace Han in the Department of Chemistry report the first demonstration of redox-induced energy release from molecular solar thermal (MOST) compounds in condensed phases, in collaboration with a team of Prof. Matthew Fuchter at Imperial College London. MOST compounds that utilize light-induced chemical isomerization for harnessing solar photon energy have emerged as an alternative to photovoltaics and artificial photosynthesis, enabling a closed-system solar photon energy storage and controlled release. Despite the discovery of various photoswitch systems that show improved photon energy storage efficiencies, the efficient and complete energy release from such photoswitches has remained a major challenge.

This work describes electrochemically-induced switching of arylazopyrazole-based photoswitches. The switching itself is electrocatalytic, requiring only a substoichiometric amount of charge, and its efficiency is improved by over an order of magnitude in the condensed phase compared to in solution. Moreover, electrochemically-induced switching affords a significantly higher completeness of switching than what could be achieved photochemically, which addresses the critical limitation of various azoheteroarene-based MOST materials. We envision that this work will promote exploration of the use of an electrical trigger for MOST material applications for a wide variety of photoswitches.

Jake L. Greenfield‡, Mihael A. Gerkman‡, Rosina S. L. Gibson, Grace G. D. Han*, and Matthew J. Fuchter* J. Am. Chem. Soc. 2021, 143, 37, 15250–15257. (‡ equal contributions) Publication Date: September 14, 2021.

Grace Han Receives Young Investigator Award

Grace HanGrace Han, Landsman Assistant Professor of Chemistry, has received a Young Investigator Research Program award from the Air Force Office of Scientific Research (AFOSR). The award will support her research on the optically-controlled catalyst recycling for 3 years.

Catalysis is one of the core processes in chemical industry and essential for achieving many products critical to the Department of Defense’s mission – from medicines to counter threats, to radiation-resistant polymeric coatings, and advanced fuels for aircraft. Catalysts are the key components that serve to improve reaction rates and product yields, and these costly compounds are generally disposed after one use. Various concepts for catalyst recycling, particularly using fluorous biphasic systems, have been developed to achieve cost-effective and sustainable synthetic procedures. However, the heating and cooling steps employed in the recycling process are only compatible with a limited scope of reactions and solvents.

To address this challenge, the Han group is developing a new class of biphasic catalysts that are optically activated, or precipitated, at a constant temperature by the incorporation of a photoswitch unit in the catalyst structure. Photoswitches are novel organic molecules that respond to light by changing their shape and physical properties including polarity. The significant shape and polarity change of the photoswitch unit will drastically change the solubility of catalysts in an organic solvent, which regulates the activity and recovery of catalysts. This new method of catalyst recycling is anticipated to reduce the costs as well as environmental impact of the conventional use of catalysts in various industries.

Protected by Akismet
Blog with WordPress

Welcome Guest | Login (Brandeis Members Only)