CaMKII: some basics to remember

The theme of Thursday’s Volen Center for Complex Systems annual retreat will be Breakthroughs in understanding the role of CaMKII in synaptic function and memory and honors the pioneering work of John Lisman. To help bring non-experts up to speed, we asked Neuroscience Ph.D. students Stephen D. Alkins and Johanna G. Flyer-Adams from the Griffith lab at Brandeis for a quick primer on CaMKII.

What’s a protein kinase? 

Protein kinases are enzymes that act by adding phosphate groups to other proteins – a process called phosphorylation. Phosphorylation of a protein usually initiates a cascade of downstream effects such as changes in the protein’s 3D shape,  changes in its interactions with other proteins, changes in its activity and changes in its localization. In causing these types of changes, kinases facilitate some of the most essential cellular and molecular processes required for survival and proper functionality.

Aren’t there lots of protein kinases? What makes CaMKII special? 

Among the roughly 500+ genes in the human genome encoding protein kinases, a kinase known as calcium (Ca2+)/calmodulin-dependent protein kinase II (CaMKII) phosphorylates serine or threonine residues in a broad array of target proteins.  Though found in many different tissues (skeletal muscle, cardiac muscle, spleen, etc.), there is a lot of CaMKII in the brain– about 1% of total forebrain protein and 2% of total hippocampal protein (in rats). Previous research, including pivotal contributions from the Lisman Lab at Brandeis University working in mammalian brain, has identified CaMKII as a cellular and molecular correlate of learning and memory through its multiple roles governing normal neuronal structure, synaptic strength, plasticity, and homeostasis. The Griffith Lab has been instrumental in demonstrating that these roles of the kinase are conserved in invertebrates.

Why do we think CaMKII might play a role in memory?

a) Location!

As previously mentioned, CaMKII accounts for up to 2% of all proteins in memory-important brain regions like the hippocampus. It’s also highly abundant at neuronal synapses, where neurons communicate with each other.

b) Function!

Memory is thought to require a process called long term potentiation (LTP) where two neurons, in response to environmental changes, will change the strength of the synaptic connections by which they communicate with each other—these changes will last even after the environmental input has disappeared. We know that CaMKII is required for LTP. We also know that the increases in neuronal calcium levels that accompany neuronal activation and cause LTP also allow CaMKII to phosphorylate itself. This autophosphorylation of CaMKII changes its kinase activity so that CaMKII can stay active well past the window of neuronal activation, essentially ‘storing’ the memory of previous neuronal activity—much like LTP!

c) Structure!

Ultimately, the issue with ‘molecular memory’ is that all proteins degrade over time, causing one to ask how we can remember things for so long when the original proteins that stored that memory no longer exist. CaMKII is such an exciting candidate for molecular memory because it is mostly found as a dodecameric holoenzyme—this means that CaMKII likes to exist as a big assembly of twelve identical CaMKII subunits. However, each CaMKII subunit retains its kinase activity even when all twelve are assembled. What’s interesting is that the autophosphorylation and activation of one CaMKII subunit (which happens when neurons are activated and intracellular calcium levels rise) actually makes it easier for the other CaMKII subunits in the twelve-unit holoenzyme to become autophosphorylated and activated. This means that maybe when an activated subunit is old and get degraded, another new CaMKII subunit could take its place among the twelve-unit holoenzyme—and become activated just like the old subunit, allowing for the ‘molecular memory’ to last beyond when proteins degrade!

CaMKII phosphorylation and activationCaMKII in more detail…

Calcium binds to the small protein calmodulin and forms (Ca2+/CaM), which acts as a ‘second messenger’ that increases in concentration when neurons are activated. CaMKII relies on calcium/calmodulin (Ca2+/CaM) binding to activate an individual domain containing a regulatory segment.  In conditions of low calcium, elements within the CaMKII regulatory segment will have less affinity for (Ca2+/CaM) binding, keeping CaMKII in an autoinhibited state.  In conditions of high calcium, (Ca2+/CaM) binding initiates phosphorylation at three threonine residue sites, including Thr286 which prevents rebinding of the regulatory segment, thus keeping CaMKII constitutively active even when calcium levels fall.  In this activated state CaMKII can autophosphorylate inactivated intra-kinase domains, and will undergo subunit exchange with neighboring inactivated CaMKII holoenzymes. Furthermore, mutation of CaMKII residues or binding sites in target proteins, such as postsynaptic glutamate (AMPA) receptors, disrupts establishment of long-term potentiation (LTP) in neurons.  Together, CaMKII’s role as molecular switch that bidirectionally, and autonomously regulates activity in neurons has earned it the illustrious title of a “memory molecule.”

What amino-acid manipulations might I hear about?

a) T286A:

Changing a threonine in a phosphorylation site to an alanine prevents phosphorylation at that site. Blocking Thr286 phosphorylation with a T286A mutation prevents CaMKII generation of autonomous activity that disrupts neuronal activity and results in learning deficits.

b) T286D:

Changing a threonine to an aspartate puts a negative charge at the site, often making it act like it’s always phosphorylated. In the case of CaMKII, a T286D mutation renders the kinase constitutively active, which can interrupt normal LTP induction and normal memory storage and acquisition.

To learn more:

Sleep and memory are connected by a pair of neurons in Drosophila

In a recent post on the Fly on the Wall blog, Neuroscience grad student Bethany Christmann talks about recently published research from Leslie Griffith’s lab:

 … [How are sleep and behavior] connected in the brain? Does sleep simply permit memory storage to take place, such that the part of the brain involved in memory just takes advantage of sleep whenever it can? Or are sleep and memory physically connected, and the same mechanism in the brain is involved in both? In a recent study published in eLife, researchers in the Griffith lab may have [uncovered the answer]. They found that a single pair of neurons, known as the DPM neurons, are actively involved in both sleep and memory storage in fruit flies.

Haynes PR, Christmann BL, Griffith LC. A single pair of neurons links sleep to memory consolidation in Drosophila melanogaster. eLife. 2015;4.

Can Self-Referencing Contribute to Memory Errors?

A recent paper in the Journal of Gerontology by Brandeis Ph.D. program alumnus Dr. Nicole Rosa and Professor Angela Gutchess attempts to answer this question. During an interview with ElderBranch, Dr. Nicole Rosa discusses the relationship between self-referencing and false memory. For more information, please read the article on ElderBranch.

To sleep, perchance to learn?

Sleep deprivation is ubiquitous in today’s society, and we have all felt the effects of sleep loss on our ability to function optimally, physically and especially mentally. In particular, it has become clear that the brain requires sleep to efficiently establish many forms of long-term memory. However, it is still unknown what sleep deprivation actually does to the brain to impair its function. In a recently published review in the journal Cellular Signalling, authors Christopher G. Vecsey from Brandeis University and Robbert Havekes and Ted Abel from the University of Pennsylvania have tried to capture the current state of our knowledge about the molecular and cellular effects of sleep deprivation that could explain why sleep loss is so detrimental for memory formation. The review focuses primarily on memories for events and places, which are thought to be formed and stored in the area of the brain called the hippocampus.

A key approach to learn about the nitty-gritty effects of sleep deprivation has been research in rodents. Therefore, the authors begin by summarizing how sleep deprivation studies are carried out in rodents, and how sleep deprivation affects memory and several signaling pathways in the brain. Notably, they review the effects of sleep loss on neurotransmitter systems such as acetylcholine, glutamate, and GABA, all of which could potentially modulate learning and memory. The authors also discuss some of the newest and most exciting studies on the topic of sleep loss, including a handful of experiments in which researchers have been able to reverse the effects of sleep deprivation through pharmacological treatments. For example, the authors describe one of their own studies in which sleep deprivation in mice caused memory deficits and reduced signaling through the cAMP pathway, which is known to be crucial for long-term memory. This molecular effect was likely caused by accelerated breakdown of cAMP by phosphodiesterase 4 (PDE4). When mice were treated with a PDE4 inhibitor during the period of sleep deprivation, memory formation remained unaffected. Rescue of memory defects were also obtained in separate studies in which rodents were treated either with nicotine, caffeine, or CPT, an antagonist of the adenosine A1 receptor. Two related studies also found that the effects of sleep deprivation on memory could be ameliorated by prevention of transmitter release from cells in the brain called glia. This was the first indication that brain cells other than neurons are impacted by sleep deprivation and that they contribute to the effects of sleep loss on the ability to remember new information.

As the authors mention, goals for studies in the immediate future will be to identify additional ways that sleep deprivation affects the brain, determine why sleep deprivation targets these molecules, and discover how these targets interact with each other to impair the normal function of the brain. Finally, hopefully our growing knowledge can be used to develop treatments for the cognitive deficits produced by sleep loss in people, especially those who have impaired sleep due to a medical condition, such as insomnia, chronic pain, sleep apnea, or one of the many neurodegenerative or psychiatric disorders associated with disturbed sleep patterns.

Christopher G. Vecsey is a postdoctoral fellow in the Griffith Lab at Brandeis, where he continues to work on interactions between sleep and learning. Chris is supported by a postdoctoral fellowship from the National Institute of Mental Health.

What we can learn about aging from worms

Coleen Murphy from the Dept of Molecular Biology at Princeton will tell us about “Slowing the Ticking Clock: What we can learn about aging and memory from C. elegans at the first Ruth Ann and Nathan Perlmutter Science Forum on Wednesday, March 9 at 4:00 pm in Gerstenzang 121. The focus of her research is on understanding the genes that regulate longevity, using C. elegans as a model system. Coleen performed her Ph.D. thesis research with Jim Spudich at Stanford where she studied myosin motors and then went on to  a post doctoral fellowship with Cynthia Kenyon at UCSF where she began studying aging. Since starting her own lab at Princeton, Coleen has been the recipient of numerous prestigious awards including a Pew Scholar Award, a Keck Distinguished Young Scholar Award, and an NIH Director’s Innovator Award. Her lab’s most recent work showed that TGF-β and insulin signaling regulates reproductive aging. In addition, her lab has also recently been looking into the connection between longevity mutants and memory in C. elegans

About the Forum: Ruth Ann Perlmutter has been a longtime friend of Brandeis University. In 1969, Nathan Perlmutter became vice president of development at Brandeis during the presidency of Morris Abrams. Perlmutter left Brandeis to become the National Director of the Anti Defamation League. Together the Perlmutters were leaders in the interfaith movement and civil rights debates for which activities Nathan received the Presidential Medal of Freedom shortly before his death in 1987. Mrs. Perlmutter earned her B.A. from the University of Denver and her masters degree in sociology from Wayne State University in Detroit. She is a sculptor and painter in her own right and currently lives in Prescott, Arizona.

Wingfield Receives 2010 Baltes Distinguished Research Achievement Award

Update; BrandeisNOW has a in-depth profile on Prof. Wingfield.

Professor Arthur Wingfield is the 2010 recipient of the Baltes Distinguished Research Achievement Award. The $5000 award, given annually by the Margaret M. and Paul B. Baltes Foundation and Division 20 (Adult Development and Aging) of the American Psychological Association (APA), recognizes outstanding contributions to our understanding of adult development and aging. As part of the award, Wingfield will deliver a keynote address at the next annual meeting of the APA.

The number of adults age 65 or older in the US is expected to grow from 35 million in the year 2000, to 70.3 million in 2030.  Among this group, hearing loss is the third most prevalent chronic medical condition, exceeded only by arthritis and hypertension.  The hearing loss associated with adult aging, or presbycusis (literally, “old hearing”) presents a more complex picture than many realize. Whether the loss is mild or more severe, the source is a thinning of hair cells located in the cochlea, a spiral-shaped structure about only the size of the nail on your little finger. There are also “higher level” effects that include the pathways from the cochea to the brain, and age-related changes in the auditory receiving areas of the brain itself. These biological changes result in the older listener expending attentional effort that is not only tiring, but can draw on resources that would ordinarily be available for encoding what has been heard in memory.

This recent award recognizes Wingfield and his Brandeis colleagues’ contributions to understanding this complex interaction between sensory and cognitive changes in adult aging.  Arthur Wingfield is the Nancy Lurie Marks Professor of Neuroscience and director of the Volen National Center for Complex Systems at Brandeis.  His work has also been recognized by the American Speech, Language and Hearing Association, and two successive MERIT Awards from the NIH’s National Institute on Aging.


Protected by Akismet
Blog with WordPress

Welcome Guest | Login (Brandeis Members Only)