Damaged DNA and self-eating (autophagy) in budding yeast.

Chromosome double-strand breaks (DSBs) threaten the integrity of the genome. Cells respond to DSBs by activating the DNA damage checkpoint that blocks cells prior to mitosis, allowing more time for the repair of damaged DNA. When the DSB can be repaired, the cell cycle checkpoint is turned off so that cells can resume cell cycle progression, a process termed recovery. If the DSB remains unrepaired, G2/M arrest persists for a long time but eventually cells adapt and – despite the persistent DNA damage – complete mitosis and divide. Much of our understanding of the DNA damage response has come from the study of the budding yeast Saccharomyces cerevisiae, where it is possible to create DSB damage synchronously in all cells of the population. This can be accomplished either by uncapping telomeres, exposing their normally protected ends or by creating a single, defined DSB by inducing the site-specific HO endonuclease. From such studies, it was possible to identify a highly evolutionarily conserved DNA damage sensing and signaling cascade that is initiated by Mec1, the yeast homolog of mammalian ATR protein kinase (reviewed in Ref. (1)). Yeast genetic approaches revealed a number of adaptation-defective mutants, a subset of which also are recovery-defective. Previous studies also demonstrated that triggering the DNA damage checkpoint affects not only mitosis and the efficiency of DNA repair within the nucleus; it also affects cytoplasmic responses (2, 3). In a new paper from the Haber lab published in PNAS, we uncovered mutations in the Golgi-Associated Retrograde Protein (GARP) complex that are adaptation-defective. We show that the defect in these mutants can be mimicked by activating the cytoplasm-to-vacuole (CVT) pathway of autophagy that prevents the nuclear accumulation of separase, Esp1, in the nucleus, thus preventing the cells both adapting and recovering from DSB damage.

In budding yeast, a single unrepaired double-strand break (DSB) triggers the Mec1-dependent cell cycle arrest prior to anaphase for 12-15 before they adapt. Adaptation is accompanied by the loss of hyperphosphorylation of Rad53, yeast’s Chk2 homolog.  Rad53 remains phosphorylated in a number of adaptation-defective mutations, including deletion of the two PP2C phosphatases, ptc2ptc3D, that normally dephosphorylate Rad53.  Adaptation is also blocked by ablating a number of proteins with diverse roles in DSB repair, including srs2D, rdh54D as well as by a mutation in yeast’s polo kinase cdc5-ad.

In our paper, we find that hyperactivation of the cytoplasm-to-vacuole (CVT) autophagy pathway causes the permanent G2/M arrest of cells with a single DSB that is reflected in the nuclear exclusion of both separase, Esp1, and its chaperone/inhibitor, securin, Pds1(See figure).  Autophagy in response to DNA damage can be induced in three different ways: (1) by deleting members of the Golgi-Associated Retrograde Protein complex (GARP) such as vps51D; (2) by adding rapamycin; or (3) by overexpressing a dominant-negative ATG13-8SA mutation.  The permanent checkpoint-mediated arrest in any of these three conditions can be overcome in three ways: (1) by blocking autophagy with mutations such as atg1D, atg5D or atg11D; (2) by deleting the vacuolar protease Prb1 or its activator, Pep4; or (3) by driving Esp1 into the nucleus with a SV40 nuclear localization signal.  In contrast, these same alterations fail to suppress the adaptation defects of ptc2ptc3D or cdc5-ad.  Transient accumulation of Pds1 in the vaucole is also seen in wild type cells lacking PEP4 after induction of a DSB.  Unlike other adaptation-defective mutations, G2/M arrest persists even as the DNA damage-dependent phosphorylation of Rad53 diminishes, suggesting that cells have become unable to activate separase to initiate anaphase after DNA damage.  In addition, we have found that cells fail to recover when VPS51 is deleted or when ATG13-8SA is overexpressed.

Increased autophagy causes the delocalization of both Pds1 (securin) and Esp1 (separase) from the nucleus in checkpoint-arrested budding yeast cells. A. GFP-tagged Pds1 and Esp1 localize to the nucleus at the neck of G2/M-arrested wild type (WT) cells that have suffered a single unrepaired chromosome double-strand break (DSB). Both rdh54Δ and vps51Δ prevent cells from adapting and resuming cell cycle progression, but only ablating Vps51 – part of the Golgi-associated retrograde protein (GARP) complex – causes the mislocalization of Pds1 and Esp1 and the partial degradation of Pds1 by vacuolar proteases. Preventing degradation of Pds1 (and possibly other mitotic regulators) results in the suppression of permanent arrest and the relocalization of sufficient Esp1 into the nucleus to release cells from their pre-anaphase arrest. A similar suppression of arrest in vps51Δ cells is obtained by disabling autophagy (not shown). B. Induction of autophagy by overexpression of ATG13-8SA (6) prevents adaptation in wild type cells. Expression of ATG13-SA was induced at the same time that a single, unrepairable DSB was created. Whereas normal cells adapt by 24 h, increased autophagy prevents cells from progressing beyond the G2/M stage of the cell cycle. Deletion of the PEP4 gene that activates vacuolar proteases or ATG1 that is required for autophagy suppresses the arrest and allows cells to divide and resume cell cycle progression.

Taken together with other recent results (4, 5), these observations emphasize that the DNA damage response can trigger the mislocalisation and cytoplasmic proteolysis of important nuclear proteins that regulate DNA repair and cell cycle progression. These results broaden our perspective on the ways in which cells respond to DNA damage and delay cell cycle progression while such damage persists.

Ex MCB grad Farokh Dotiwala, current MCB grad Vinay Eapen and ex-postdoc Jake Harrison were the co-first authors on this paper. Assistant professor Satoshi Yoshida also contributed significantly to this project.

Dotiwala F(*), Eapen VV(*), Harrison JC(*), Arbel-Eden A, Ranade V, Yoshida S & Haber JE (2012) DNA damage checkpoint triggers autophagy to regulate the initiation of anaphase, PNAS (Published online before print November 19, 2012, doi: 10.1073/pnas.1218065109)

1.         Harrison JC & Haber JE (2006) Surviving the breakup: the DNA damage checkpoint. Annu Rev Genet 40:209-235.
2.         Dotiwala F, Haase J, Arbel-Eden A, Bloom K, & Haber JE (2007) The yeast DNA damage checkpoint proteins control a cytoplasmic response to DNA damage. Proc Natl Acad Sci U S A 104(27):11358-11363.
3.         Smolka MB, et al. (2006) An FHA domain-mediated protein interaction network of Rad53 reveals its role in polarized cell growth. J Cell Biol 175(5):743-753.
4.         Robert T, et al. (2011) HDACs link the DNA damage response, processing of double-strand breaks and autophagy. Nature 471(7336):74-79.
5.         Dyavaiah M, Rooney JP, Chittur SV, Lin Q, & Begley TJ (2011) Autophagy-dependent regulation of the DNA damage response protein ribonucleotide reductase 1. Mol Cancer Res 9(4):462-475.
6.         Kamada Y (2010) Prime-numbered Atg proteins act at the primary step in autophagy: unphosphorylatable Atg13 can induce autophagy without TOR inactivation. Autophagy 6(3):415-416.

How yeast switch mating type and why we care

For grad students needing background on work in the Haber lab studying DNA recombination and repair, there are a couple new papers out to help you. A new review by Prof. Haber entitled Mating-type genes and MAT switching in Saccharomyces cerevisiae in Genetics provides a detailed introduction to literature. There’s a lot there… as Jim says in the Acknowledgements

The part of this work that derives from my own lab has been carried out for more than 30 years by an exceptional contingent of graduate students, postdoctoral fellows, technicians, and Brandeis University undergraduates […]

If methods papers are what you need instead, check out Sugawara & Haber (2012), Monitoring DNA Recombination Initiated by HO Endonuclease in Methods in Molecular Biology.

How does a hard-wired simple circuit generate multiple behaviors?

In a paper appearing in last week’s issue of Neuron, members of the Sengupta Lab and their collaborators from the Bargmann Lab describe how a fixed neural circuit produces multiple behaviors in a context-dependent manner.  The study was led by former Brandeis post-doctoral fellow Kyuhyung Kim in the Sengupta Lab (currently Assistant Professor at DGIST, Korea) and Rockefeller student Heeun Jang in the Bargmann Lab. Also involved in the study were current Brandeis MCB students Scott Neal and Danna Zeiger, and Dongshin Kim, the head of the Brandeis Microfluidics Facility.

For this study the researchers used the nematode Caenorhabditis elegans. The nervous system of C. elegans consists of only 302 neurons (in the adult hermaphrodite) whose anatomical connectivities are well-mapped. Despite its relatively small nervous system, C. elegans exhibits a wide range of behaviors in response to environmental stimuli. For instance, C. elegans exhibits varied responses to pheromones – small chemical substances used for intra-specific communication. Some pheromones are repulsive to adult hermaphrodite C. elegans but neutral to male C. elegans. However, reducing the function of the neuropeptide Y-like receptor NPR-1 results in hermaphrodites now exhibiting neutral pheromone responses and males becoming strongly attracted. The researchers asked how the sex and neuromodulatory state of the animal allows it to interpret the pheromone stimulus differently to generate distinct behavioral responses.

To answer this question, the researchers used behavioral assays, genetic manipulations of neuronal output, and in vivo measurements of pheromone-induced neuronal activity (using genetically encoded calcium sensors and customized microfluidics devices designed by the Brandeis Microfluidics Facility). They found that flexible output of a neuronal ‘hub-and-spoke’ circuit motif was responsible for generating these distinct pheromone responses under different conditions.

In this circuit, pheromone-sensing neurons ASK and ADL are connected to the central RMG motor/interneuron by gap junctions (see Figure). Jang et al. showed that in hermaphrodites with high levels of NPR-1 activity, the ADL sensory neurons respond strongly to a specific pheromone component and drive avoidance behavior via their chemical synapses to command interneurons for locomotion. However, sexual dimorphism in the circuit results in males having reduced ADL pheromone responses.  Moreover, Jang et al. showed that ADL synaptic output in males is further decreased via RMG and ASK-mediated antagonism (see Figure). As a result, males are indifferent to this pheromone.

The next issue the authors addressed is the role of NPR-1 activity in regulating pheromone responses. The Bargmann Lab had previously shown that high NPR-1 activity inhibits RMG, and under these conditions, pheromone responses of the ASK sensory neurons are low. Conversely, when NPR-1 activity is reduced or absent, ASK pheromone responses are enhanced. Jang et al. found that in the absence of NPR-1 activity, ADL chemical synaptic output in response to pheromones is antagonized by the RMG-ASK gap junction circuit. In other words, avoidance mediated by ADL chemical synaptic output is balanced by attraction mediated by the RMG-ASK gap junction circuit, resulting in hermaphrodites being neither attracted to nor avoiding this pheromone. In males with reduced NPR-1 activity the same effects are observed, however, since the ADL pheromone response is already lower in males, the RMG-ASK attraction-mediating arm “wins” resulting in attraction to pheromones.  The authors refer to these as overlapping ‘push-pull’ circuits in analogy with electronic circuits.

These results begin to explain how a small fixed circuit can generate a remarkable range of behaviors via alteration of sensory response properties as well as choice of specific synaptic output pathway as a function of neuromodulatory state and sex. The general theme of a circuit functioning differently under different neuromodulatory conditions has been extensively studied in the Marder Lab in the crustacean nervous system, and is an important principle to be kept in mind when interpreting functionality from structurally described connectomes.

Jang H(*), Kim K(*), Neal SJ, Macosko E, Kim D, Butcher RA, Zeiger DM, Bargmann CI, Sengupta P. Neuromodulatory State and Sex Specify Alternative Behaviors through Antagonistic Synaptic Pathways in C. elegans. Neuron. 2012;75(4):585-92.

Sept 18 Symposium on Stem Cell Genetics

On September 18th, 2012, the Molecular and Cell Biology graduate students supported by our  Genetics Training Grant from NIGMS will be hosting a symposium entitled “Stem Cell Genetics: Insights and Applications”. We will be joined by four distinguished scientists who will be presenting their recent work:

Rudolf Jaenisch (Whitehead Institute), our Keynote Speaker, will speak to us about the epigenetic regulation of gene expression in development and cell differentiation;
Constance Cepko (Harvard Medical School) will present her work on the development and degeneration of the vertebrate central nervous system, using the retina as a model;
Fernando Camargo (Harvard Stem Cell Institute) will talk about the molecular basis of tissue size regulation and the role of transcription factors and micro RNAs in hematopoietic stem cell fate;
Konrad Hochedlinger (MGH) will present work on mechanisms underlying pluripotency in embryonic stem cells and nuclear reprogramming.

The talks will take place in the Shapiro Campus Center Theater, and we also invite you to join us at the subsequent Poster Session and Reception. Current and former trainees supported by the Genetics Training Grant will be presenting posters from 3:40 to 5:00 PM on the 2nd floor of the Shapiro Science Center. In addition, all life sciences graduate students are encouraged to present posters.

The entire event is free and open to the public. For planning purposes, we ask anyone attending the symposium and/or presenting a poster to pre-register at http://www.bio.brandeis.edu/gtg_symposium/ by September 10th, 2012. You can also visit this website to see the symposium schedule, and to see the list of poster titles after registration is complete.

Please join us for this exciting symposium showcasing genetics at Brandeis!

Blanca Carbajal-Gonzalez
Marissa Donovan
Adam Johnston
Cara Pina
Andy Russell
Mike Spellberg

Grad student teaching awards 2012

Nineteen graduate students from across the Graduate School of Arts and Sciences were recognized for their superb efforts as teaching assistants at a reception on May 1. Awards were made by department based on overall teaching quality, student and course instructor evaluations, and letters from faculty. Graduate students from the Division of Science so recognized were:

  • Margeaux Auslander (Psychology – Verna Regan Award)
  • Keri Avery (Chemistry–general chemistry laboratory sections)
  • Michael Drzyzga (Chemistry–organic chemistry laboratory sections)
  • Qian Liu (Chemistry–upper level laboratory sections)
  • Lishibanya Mohapatra (Physics)
  • Matthew Moynihan (Mathematics)
  • Andrew Russell (Molecular and Cell Biology – Pulin Sampat Memorial Award)
  • Ross Shaull (Computer Science)

Koushika (PhD ’99) gains HHMI International Early Career Scientist award

Sandhya P. Koushika, a gradute of Brandeis’s Molecular and Cell Biology program (PhD, 1999), and currently running a lab at the National Center for Biological Sciences in Bangalore, has been named an HHMI International Early Career Scientist. This pilot program of the Howard Hughes Medical Institute seeks to identify scientists working abroad with the potential to become scientific leaders, and awards each with $650,000 over five years to help establish independent research programs. Of 28 scientists from 12 countries so named, Koushika was the only recipient in India. While at Brandeis, Koushika worked in Kalpana White‘s lab on the role of ELAV in neural develeopment in Drosophila. In her postdoc, Koushika switched systems to work in the worm C. elegans, and her lab is currently focused on genetic techniques to study axonal transport, a key feature of nerve cells, in the worm model.

Protected by Akismet
Blog with WordPress

Welcome Guest | Login (Brandeis Members Only)