Geometry and Dynamics IGERT Awarded

Brandeis has just been awarded an NSF Integrative Graduate Education and Research Traineeship (IGERT) grant in the mathematical sciences.  The grant, titled Geometry and Dynamics: integrated education in the mathematical sciences, is designed to foster interdisciplinary research and education by and for graduate students across the mathematical and theoretical sciences, including chemistry, economics, mathematics, neuroscience, and physics.  It is structured around a number of themes common to these disciplines: complex dynamical systems, stochastic processes, quantum and statistical field theory; and geometry and topology. We believe that it is the first IGERT awarded for the theoretical (as opposed to laboratory) sciences, and are very excited about what we believe to be a highly novel program which will cement existing interdepartmental relationships and encourage exciting new collaborations in the mathematical sciences, including collaborations between the natural sciences and the International Business School (IBS).

The resolution of a singularity that develops along Ricci flow, understood mathematically by Grigori Perelman.  If the red manifold represents the target space of a string, it is conjectured that the corresponding two-dimensonal field theory describing the string undergoes confinement and develops a mass gap for the degrees of freedom corresponding to the singular regime.

The award, for $2,867,668 spread out over five years, provides funds for graduate student stipends, travel, seminar speakers, and interdisciplinary course development.  It contains activities and research opportunities in partnership with the New England Complex Systems Institute (NECSI) in Cambridge, MA.  It also provides opportunities for research internships at the International Center for the Theoretical Sciences in Bangalore.

The PIs on the grant are: Bulbul Chakraborty (Physics); Albion Lawrence (Physics: lead PI); Blake LeBaron (IBS); Paul Miller (Neuroscience); and Daniel Ruberman (Mathematics).  There are 11 additional affiliated Brandeis faculty across biology, chemistry, mathematics, neuroscience, physics, and psychology.  Contact Albion Lawrence (albion@brandeis.edu) for more information about the program.

Arrays of repulsively coupled Kuramoto oscillators on a triangular lattice organize into domains with opposite helicities in which phases of any three neighboring oscillators either increase or decrease in a given direction. Fig. (a) illustrates these two helicities in which cyan, ma- genta and blue vary in opposite directions. In Fig. (b), white and green regions represent domains of opposite helicities. The red regions indicate the frequency entrained oscillators, which are predominantly seen in the interior of the domains.

Admission to the program is handled through the Ph.D programs in the various disciplines:

Brandeis in Aspen II: Physics of granular materials

This post is a companion to Brandeis in Aspen I, and describes a workshop attended by Bulbul Chakraborty and Aparna Baskaran at the Aspen Center for Physics. The format of Aspen workshops is different from the usual academic workshop.  Each day has just one or two talks, which are primarily self-organized on a volunteer basis among the participants.  The format is designed to encourage  physicists working in a particular area to share research findings and enable cross-pollination of ideas in an informal and loosely structured setting.

The workshop attended by Chakraborty and Baskaran was entitled “Fluctuation and Response in granular materials”. Granular materials are ubiquitous in nature and industry. Examples range from sand and other geological materials, food and consumer products, and pebble beds in nuclear reactors. Understanding and controlling the properties of granular materials impacts such diverse processes as oil recovery, nuclear pebble bed reactors, printing and copying, and pharmaceutical processing. Granular media pose difficult and unique scientific challenges that distinguish them from atomic, nano-scale, and colloidal materials. Being intrinsically out of thermal equilibrium, assemblies of grains readily become trapped in metastable states, are extremely sensitive to preparation conditions, and can have strongly time-dependent properties.  Relaxing the constraints of thermal equilibrium, however, offers an advantage by opening up possibilities for creating novel static and dynamic phases that have distinctive functional properties.

At Aspen, the one-on-one and small sub group interactions among the participants covered a wide range of topics that are at the forefront of materials research, however, the program as a whole primarily focused on two questions. The first question was: What do we understand about jamming of granular materials? Jamming is what occurs in everyday life when we are trying to get coffee beans out of a hopper and they suddenly stop flowing. We fix this by tapping on the hopper. But this same phenomenon when it happens in giant grain silos causes them to collapse. So, one of the challenges is to be able to predict jamming events. The role of the physicist here is to design and carry out experiments in minimal model systems and develop theoretical frameworks that lead to predictive models of observed phenomena. Statistical Mechanics provides a powerful theoretical tool to address this question and our own Professor Chakraborty is one of the leading experts in the theory of jamming. The participants at the workshop had several robust discussions on the current understanding of this phenomenon and theoretical and experimental challenges that remain to be addressed.

The second question that the workshop focused on was : How does a dense granular material behave when sheared? Granular materials are called rheological fluids in that they exhibit shear-thinning and shear thickening behavior. In everyday life, we are all familiar with shear thinning. When we squeeze a tube of toothpaste, we are shearing it and it flows onto our brush. But once on the brush it stays put. This behavior is called shear thinning. Understanding rheology of granular materials is important for diverse applications ranging from pharmaceutical processes to being able to print well. The participants discussed in detail the physics of sheared granular materials and shared insight obtained from theory, simulations and experiments.

All participants departed the workshop invigorated by the robust exchange of ideas, ready to address the challenges presented by these complex materials.

Brandeis in Aspen I: String theory and quantum information

The Aspen Center for Physics is a physics retreat in which groups of researchers in a given field gather for a few weeks during the summer to discuss the latest developments and create the next ones. This May, a record four Brandeis physicists — almost a quarter of the department — visited the Center at the same time, attending two different workshops. This posting is about a workshop attended by string theorists Matthew Headrick and Albion Lawrence (and co-organized by Headrick);  another posting will describe a workshop attended by condensed-matter theorists Aparna Baskaran and Bulbul Chakraborty (a member of the Center’s advisory board).  Entry into Aspen workshops is competitive, so this strong Brandeis representation is remarkable; as always, we punch above our weight.

Headrick and Lawrence attended the workshop Quantum information in quantum gravity and condensed matter physics.  This was a highly interdisciplinary workshop, which brought together specialists in quantum gravity, including Headrick and Lawrence; experts in quantum information theory; and experts in “hard” condensed matter physics (who study material properties for which quantum phenomena play a central role).

Quantum information theorists study how the counterintuitive features of quantum mechanics — such as superpositions of states, entanglement between separated systems, and the collapse of the wave function brought on by measurement — could be exploited to produce remarkable (but so far mostly hypothetical) technologies like teleportation of quantum states, unbreakable encryption, and superfast computation. What does this have to do with gravity? When we try to formulate a consistent quantum-mechanical theory of gravity — which would subsume Einstein’s classical general theory of relativity — the concept of information crops up in numerous and often puzzling ways. For example, Stephen Hawking showed in the 1970s that, on account of quantum effects, black holes emit thermal radiation. Unlike the radiation emitted by conventional hot objects, which is only approximately thermal, pure thermal radiation of the kind that Hawking’s calculation predicted cannot carry information. Many physicists (including Hawking) therefore originally interpreted his result as implying that black holes fundamentally destroy information, challenging a sacred principle of physics. Today, based on advances in string theory, physicists (including Hawking) generally believe that in fact black holes do not destroy the information they contain.  Rather, black holes hide information in very subtle ways, by scrambling, encryption, and perhaps quantum teleportation — in other words, the same kinds of tricks that the quantum information people have been inventing and studying independently at the same time.

Another connection between gravity and information is provided by the so-called “holographic principle”, which also arose in the study of black holes and which has been given a precise realization in the context of string theory. This principle posits that, due to a combination of gravitational and quantum effects, there is a fundamental limit to the amount of information (i.e. the number of bits) that can be stored in a region of space, and furthermore that limit is related to its surface area, not its volume. String theorists, beginning with the seminal work of Juan Maldacena, have uncovered a number of precise implementations of this principle, in which certain quantum theories without gravity are holograms of theories of quantum gravity.  This should provide an avenue for uncovering the “tricks” gravity uses to hide information, a subject Lawrence is active in.  An additional benefit of these implementations is that calculations in the nongravitational theories which seemed prohibitively difficult become fairly simple in the gravitational side; these include  the computation of interesting quantities in quantum information theory, an area in which Headrick has done influential work.

All of these issues and many others were discussed in Aspen. This rather unique workshop was a very fruitful exchange of ideas, with physicists from three fields learning from each other and forging new interdisciplinary collaborations, in a setting where the scenery matched the grandeur of the subject.

Collective behaviors in active matter

Active matter is describes systems whose constituent elements consume energy and are thus out-of-equilibrium. Examples include flocks or herds of animals, collections of cells, and components of the cellular cytoskeleton. When these objects interact with each other, collective behavior can emerge that is unlike anything possible with an equilibrium system. The types of behaviors and the factors that control them however, remain incompletely understood. In a recent paper in Physical Review Letters, “Excitable patterns in active nematics“, Giomi and coworkers develop a continuum theoretical description motivated by recent experiments from the Dogic group at Brandeis in which microtubules (filamentous cytoskeletal molecules) and clusters of kinesin (a molecular motor) exhibit dramatic spatiotemporal fluctuations in density and alignment. Specifically, they consider a hydrodynamic description for density, flow, and nematic alignment. In contrast to previous theories of this type, the degree of nematic alignment is allowed to vary in space and time.  Remarkably, the theory predicts that the interplay between non-uniform nematic order, activity and flow results in spatially modulated relaxation oscillations, similar to those seen in excitable media and biological examples such as the cardiac cycle. At even higher activity the dynamics is chaotic and leads to large-scale swirling patterns which resemble those seen in recent experiments. An example of the flow pattern is shown below left, and the nematic order parameter, which describes the degree of alignment of the filaments, as shown for the same configuration below right. These predictions can be tested in future experiments on systems of microtubules and motor proteins.

The system behavior for an active nematic at high activity. (left) The velocity field (arrows) is superimposed on a plot of the concentration of active nematogens (green=large concentration, red=small concentration). (right) A plot of the nematic order parameter, S,  (blue=large S, brown=small S) is superimposed on a plot of the nematic director (arrows). The flow under high activity is characterized by large vortices that span lengths of the order of the system size and the director field is organized in grains.

 

A lattice of interacting chemical oscillators

At Brandeis, there is a long tradition of interesting experiments on the Belousov-Zhabostinsky reaction system, with the legendary Zhabotinsky himself having been a part of the fraternity. This reaction system shows interesting oscillatory and stable patterns (see videos on Youtube). In the Fraden lab, an oil emulsion of micron-sized water droplets containing the BZ reactions, was shown to show interesting synchronization properties and complex spatial patterns [Toiya et al, J. Phys. Chem. Lett. 1, 1241 (2010)]. A coupling between the droplets due to preferential diffusion of an inhibitory reactant (bromine) in the oil medium was seen to be responsible for these collective phenomena.

In a new paper titled “Phase and frequency entrainment in locally coupled phase oscillators with repulsive interactions” in Phys. Rev. E, Physics Ph. D student Michael Giver, postdoc Zahera Jabeen and Prof. Bulbul Chakraborty show that neighboring oscillators can be modeled as Kuramoto phase oscillators, coupled nonlinearly to its nearest neighbors. The form of the coupling chosen is repulsive, which favors out of phase synchronization. They show using linear stability analysis as well as numerical study that the stable phase patterns depend on the geometry of the lattice. A linear chain of these repulsively coupled oscillators shows anti-phase synchronization, in which neighboring oscillators show a phase difference of π The phase difference between the neighboring oscillators when placed on a ring however depends on the number of oscillators. In such a case, the locally preferred phase difference of π is ruled out for an odd number of oscillators, as this may lead to frustration. When these oscillators are placed on a triangular lattice in two dimensions, the geometry of the lattice constrains the phase difference between two neighboring oscillators to 2 π /3. Interestingly, domains with different helicities form in the lattice. In each domain, the phases of any three neighboring oscillators can vary continuously in either clockwise or an anti-clockwise direction. Hence, phase difference between the nearest neighbors are seen to be ±2π /3 in the two domains (See figure). A phase difference of π is seen at the interfaces of these domains. These domains can grow in time, resembling domain coarsening in other statistical studies. At large coupling strengths, the domains freeze in size due to frequency synchronization of all the oscillators. Hence, an interplay between frequency synchronization and phase synchronization was seen in this system. Ongoing studies in the BZ experimental setup at the Fraden Lab, find correlations with the above results. Hence, insights into a complex system like the BZ oscillators could be gained using the phase oscillator formalism.

The research was supported by the ACS Petroleum Research Fund and the Brandeis MRSEC. Michael Giver is a trainee in the Brandeis NSF-sponsored IGERT program Time, Space & Structure: Physics and Chemistry of BIological Systems

Physics students present research at 20th Annual Berko Symposium on May 16

On Monday, May 16, the Physics Department will hold the Twentieth Annual Student Research Symposium in Memory of Professor Stephan Berko in Abelson 131. The symposium will end with talks by the two Berko Prize winning students, undergraduate Netta Engelhardt and graduate student Tim Sanchez. The whole department then gathers for a lunch of cold cuts, cookies and conversation. “It’s a great way to close out the academic year,” said Professor of Astrophysics and Department Chair John Wardle. “We come together to celebrate our students’ research and hear what the different research groups are doing.”

The undergraduate speakers will describe their senior thesis honors research. This is the final step in gaining an honors degree in physics, and most of them will also be co-authors on a paper published in a mainline science journal. The graduate student speakers are in the middle of their PhD research, and will disucss their progress and their goals.

The prize winners are nominated and chosen by the faculty for making particularly noteworthy progress in their research. Graduate student winner Sanchez’ talk is titled “Reconstructing cilia beating from the ground up.” He works in Professor Zvonimir Dogic’s lab studying soft condensed matter. Undergraduate winner Engelhardt’s talk is titled “A New Approach to Solving the Hermitian Yang-Mills Equations”. She works with Professors Matt Headrick and Bong Lian (Math) on problems in theoretical physics and string theory. The schedule for Monday morning and abstracts of all the talks can be found on the Physics Department website.

Sanchez’ research very much represents the growing interdisciplinary nature of science at Brandeis. Here, a physicist’s approach is used to study a biological organism. Professor Zvonimir Dogic says of his work “He has made a whole series of important discoveries that are going to have a measurable impact on a number of diverse fields ranging from cell biology, biophysics, soft matter physics and non-equilibrium statistical mechanics.  His discoveries have fundamentally transformed the direction of my laboratory and probably of many other laboratories as well.”

Engelhardt’s research is much more abstract and mathematical, and concerns fundamental problems in string theory, not usually an area tackled by undergraduates. Professor Headrick says “Netta really, really wants to be a theoretical physicist, preferably a string theorist. She has a passion for mathematics, physics, and the connections between them.” He adds that she is utterly fearless in tackling hard problems. Netta has been awarded an NSF Graduate Research Fellowship based on her undergraduate work here.  Next year she will enter graduate school at UC Santa Barbara and will likely work with eminent string theorist Gary Horowitz, who has already supervised the PhD research of two other Brandeis physics alumni, Matthew Roberts ’05, and Benson Way ’08.

This Student Research Symposium is now in its 20th year. The “First Annual…..” (two words which are always unwise to put next to each other) was initiated in 1992 by Wardle to honor Professor Stephan Berko, who had died suddenly the previous year. Family, friends and colleagues contributed to a fund to support and celebrate student research in his memory. This provides the prize money which Netta and Tim will share.

Stephan Berko was a brilliant and volatile experimental physicist who was one of the founding members of the physics department. He was born in Romania in 1924 and was a survivor of both the Auschwitz and Dachau concentration camps. He came to the United States under a Hillel Foundation scholarship and obtained his PhD at the University of Virginia. He came to Brandeis in 1961 to establish a program in experimental physics and worked tirelessly to build up the department. Together with Professors Karl Canter (dec. 2006) and Alan Mills (now at UC Riverside) he established Brandeis as a world center for research into positrons (the anti-matter mirror image of ordinary electrons). In a series of brilliant experiments they achieved many “firsts,” culminating in election to the National Academy of Sciences for Steve, and, it has been rumored, in a Nobel Prize nomination for the three of them. Steve was as passionate about teaching as he was about research, and when he died, it seemed most appropriate to honor his memory by celebrating the research of our graduate and undergraduate students. During the coffee break on Monday, we will show a movie of Steve lecturing on “cold fusion,” a headline-grabbing but phony claim for producing cheap energy from 1989.

Graduate Student Andreas Rauch awarded Outstanding Teaching Fellow in Physics

Graduate student Andreas Rauch has been awarded the Outstanding Teaching Fellow award in Physics based on his overall teaching excellence, student and course instructor evaluations, and letters from faculty.  According to Professor John Wardle, Chair of the Physics Department, “Andreas’ several years of teaching math in German schools has helped make him one of the best and most experienced Teaching Fellows I have known. This award is very well deserved.”  Andreas has been a teaching fellow in Physics 29a, Electronics Laboratory with Professor Larry Kirsch; Physics 25b, Astrophysics with Professor John Wardle; Physics 19b, Physics Laboratory II with Professor Zvonimir Dogic; and Physics 31a, Quantum Theory I with Professor Matthew Headrick.

Four other teaching fellows in the sciences will also be recognized at this year’s TF Award reception on May 6:

Mark Bezpalko (Chemistry)
Ryan Broderick (Mathematics)
Xiaochuan Cai (Chemistry)
Fan Zhao (Chemistry)

NSF CAREER Award for Headrick

Assistant Professor of Physics Matthew Headrick has received a Faculty Early Career Development (CAREER) award from the National Science Foundation. Headrick’s project “CAREER: Holography, Quantum Information, and Elliptic Relativity” will fund his research exploring issues in string theory and classical and quantum gravity. The two projects address 1) study of the thermal and statistical physics of holographic systems, and quantum gravity more generally, through the lens of quantum information theory, and 2) continuing the development of practical, general methods for numerically solving the elliptic Einstein equation to find static, stationary, and Euclidean metrics for higher-dimensional black holes and compactification spaces. NSF grants require broader impact activites. Headrick will participate in TheoryNet, an NSF-funded program in which high-energy physicists visit high-school science classrooms, and will also work with the Brandeis Science Posse program.

Associate Professor Zvonimir Dogic, also in the Physics department, was a 2010 recipient of an NSF CAREER award.

Protected by Akismet
Blog with WordPress

Welcome Guest | Login (Brandeis Members Only)