Protein Flexing: A New Look at Transcription-Coupled DNA Repair

Alexandra M. Deaconescu, a research associate in the Rosenstiel Basic Medical Sciences Research Center and 2008-2010 Fellow of the Damon Runyon Cancer Research Foundation, together with Professor of Biochemistry and HHMI Investigator Nikolaus Grigorieff and collaborators in the Laboratory of Dr. Irina Artsimovitch at Ohio State University have just published a new study in PNAS, which delineates novel mechanistic details of transcription-coupled DNA repair.

In any cell, there is intense interplay between various DNA-based transactions, such as replication, transcription and DNA repair. More than twenty years ago, it was discovered that DNA lesions that cause stalling of RNA polymerase molecules elicit a form of preferential nucleotide excision repair (NER) that exists in both eubacteria and eukaryotes, and specifically targets the transcribed DNA strand. Termed transcription-coupled DNA repair (TCR), the process is found to be carried out in bacteria by an ATPase called Mfd or TRCF (see Figure, right). In TCR, TRCF performs two functions: 1) it recognizes a damage-stalled RNA polymerase (RNAP), then dissociates it off the DNA using energy derived from ATP hydrolysis and 2) it recruits DNA repair enzymes via binding to the UvrA subunit of the Uvr(A)BC NER machinery [1].   The Uvr(A)BC machinery is one of the main players in bacterial DNA repair, and distinguishes itself from other DNA repair proteins by its ability to repair a remarkably diverse repertoire of lesions by utilizing a “cut and patch” mechanism, whereby an oligonucleotide containing the damage is excised and the gap later filled.

The cellular role of TRCFs extends beyond TCR. Because of their ability to forward translocate and dissociate stalled RNAPs (or  “backtracked” RNAPs that have slid backwards on the template) [2], TRCFs are also involved in transcription elongation regulation [3, 4], resolution of head-on collisions of the transcription apparatus with the DNA replication machinery [5], and antibiotic resistance [6, 7]. In humans, the effects of impaired TCR are systemic and complex. Mutations in the transcription-repair coupling factor CSB lead to Cockayne Syndrome [8], a progeroid (accelerated-aging) disease characterized by severe developmental abnormalities and neurodegeneration, and whose etiology is currently poorly understood.

To elucidate the mechanism underpinning UvrA recruitment by TRCF, Deaconescu crystallized and solved the X-ray structure of a core UvrA-TRCF complex (Figure, left) demonstrating that UvrA binding involves unmasking of a conserved intramolecular surface within TRCF via a gating motion of the C-terminal domain (red in Figure above). Despite significant effort so far, Deaconescu is still trying to coax nucleotide-bound TRCF to form crystals suitable for X-ray diffraction. These would be highly informative because ATP is required for DNA binding, and its hydrolysis leads to TRCF translocation on dsDNA and ultimately release of RNAP off the damaged template.  Because diffracting crystals eluded her, and to further find out how ADP/ATP modulate the structure of TRCF, Deaconescu learned small-angle X-ray scattering techniques suitable for probing TRCF in solution in the absence and presence of nucleotides, thus circumventing the need for highly-ordered crystals. Then, the Brandeis team and their collaborators at Ohio State employed domain-locking disulfide engineering in conjunction with functional assays to gain a deeper understanding of what TRCF looks like during its catalytic cycle and upon binding to UvrA.  They find that the two main functions of TRCF (RNAP release and UvrA binding) can be uncoupled, suggesting that UvrA recruitment may only occur during/post RNAP release, and not upon RNAP binding as had been proposed earlier in the literature [9]. Furthermore, they show that the ternary elongation complex (consisting of RNAP, template and nascent RNA), but not naked DNA, significantly stimulates ATP hydrolysis by TRCF. Thus, bacterial TRCF operates in a manner reminiscent of that utilized by eukaryotic chromatin remodeling factors, and are preferentially stimulated by nucleosomes over naked DNA substrates.

Deaconescu previously “looked” at TCR using X-rays – as a graduate student she solved the first structure of an intact transcription-repair coupling factor from any organism using X-ray crystallography [10]. She now hopes to reconstitute the larger intermediates that form during TCR and bridge low- with high-resolution information using hybrid structural methods, particularly electron cryo-microscopy, and ultimately formulate a cogent model of how TRCFs operate in cells.

“Similar differences”: radial spokes are different from each other, but conserved across species

Eukaryotic cilia and flagella are highly conserved organelles present on the surfaces of many animal cells and protists. These organelles are important for cell motility and/or sensing of the environment. Virtually all motile cilia and flagella share the same microtubule-based core structure, the axoneme, composed of nine doublet microtubules (DMTs) surrounding a central pair of singlet microtubules known as the central pair complex (CPC) (Fig. 1). Structurally, each DMT is built from many copies of a 96 nm-long unit that repeats along the longitudinal DMT axis (Fig. 1A). The proper assembly and function of the components of these repeat units are necessary for the generation of the characteristic wave form of ciliary and flagellar movement. Mutations in these components have been linked to various human diseases termed ciliopathies.

”]Important components of the 96 nm repeat unit include the dyneins – molecular motors that convert chemical energy into motion – and complexes that regulate dynein activity, such as radial spokes (RSs) and the Nexin-Dynein Regulatory Complex (N-DRC). The dyneins are arranged in two rows: the inner-dynein arms (IDAs) and the outer-dynein arms (ODAs) (Fig. 1B). All dynein motors are permanently anchored on one DMT and generate force by walking along the neighboring DMT, causing both DMTs to slide against one another. Connections between neighboring DMTs, e.g.the nexin links, restrict this sliding motion between DMTs and transform it into the bending motion typical of cilia and flagella. Dynein motors can only move in one direction: towards the minus end of the DMT. Consequently, dyneins on one side of the axoneme cause the axoneme to bend in one direction, whereas dyneins on the opposite side of the axoneme cause it to bend in the opposite direction (Fig. 1B).

Figure 1 (right): A) Model of the 96nm axonemal repeat containing important regulatory structures. B) An overview of the axoneme in cross section. C and D) Axoneme bending in opposing directions is achieved by alternating activation of dynein motors between opposing DMT subsets. [Heuser et al., 2009]

To generate the characteristic flagellar beating patterns, only subsets of dyneins must be active at any given time. If the dyneins were all active at once, this would put the cilia and flagella in a rigor-like state, as opposite sides of the axoneme would be trying to bend in opposing directions. Precise regulation of  dyneins present on subsets of DMTs is thus required to achieve a normal beating pattern. The current model for how cilia and flagella achieve such regulation is that the dyneins receive chemical and mechanical cues from the CPC, through the RSs, to the IDAs or through the N-DRC and the I1-dynein complex to the ODAs. The RSs are key players in this signaling pathway that regulates motility. Previously, classical electron microscopy studies have described RSs as T-shaped structures that are present either as pairs (termed RS1 and RS2; e.g. in Chlamydomonas) or triplets (termed RS1, RS2, and RS3; e.g. in mammalian cilia, sea urchin flagella, and Tetrahymena).  It was thought that RSs within pairs or triplets were all structurally identical. Recently, however, the Nicastro group and collaborator Elizabeth Smith’s lab at Dartmouth University demonstrated that RS1 and RS2 (green and blue in Fig. 2 bottom) of the RS pair in Chlamydomonas exhibit heterogeneity, i.e. their docking to the DMT and the structure of their bases are different, suggesting different roles in motility regulation (Barber et al., 2012; Dymek et al. 2011).

The Nicastro lab at Brandeis University aims at understanding the structure and function of cilia and flagella. Using state-of-the-art structural methods, such as cryo-electron tomography and sub-tomogram averaging, the Nicastro lab is visualizing the axonemes of different model organisms such as protists (e.g. the bi-flagellated alga Chlamydomonas or the ciliate Tetrahymena with thousands of cilia) and metazoa (e.g. sea urchin sperm flagella) at unprecedented detail (Nicastro et al. 2006; Heuser et al. 2009).

In a new study, Dr. Jianfeng Lin (a post-doc in the Nicastro lab) and his colleagues from the Nicastro lab have revealed a remarkably distinct RS heterogeneity that is highly conserved across species (Fig. 2) (Lin et al., 2012). At a resolution of 3.6 nm, it became obvious that RS3 (orange in Fig. 2 top) is structurally unique; bearing no resemblance to RS1 and RS2 (green and blue in Fig. 2 top). In comparison to RS1 & 2, RS3 is larger in mass, and has a bulkier and irregular shape, including the RS head, which consists of two rotationally symmetric halves in RS1 & 2, but is asymmetric in RS3 (Fig. 2 top).

Figure 2 (left): Top) Isosurface renderings of RS1 (green), RS2 (blue) and RS3 (orange) in sea urchin sperm flagella. Center) Cross section model of a sea urchin sperm flagellum displaying doublet specific features of the RSs. Bottom) Isosurface renderings of RS1 (green), RS2 (blue) and RS3S (orange) in Chlamydomonas flagella.

Perhaps the most intriguing structural difference observed was that RS3 exhibits features which are specific to only some of the nine DMTs, so called doublet-specific features (Fig. 2 center). For example, a structure termed the Radial Spoke Joist (RSJ) is only present on DMTs 3, 4, and 7-9 (magenta in Fig. 2 center). These features seem to act as a triad that connects three major regularory complexes, RS2, RS3, and the N-DRC. The doublet-specific features observed on RS3 suggest that RS3 plays a unique and currently unknown role in generating typical cilia and flagella beating patterns in sea urchin flagella and Tetrahymena cilia.

Although the Chlamydomonas axoneme contains only RS pairs, it does possess a structure that occupies the same site in each axonemal repeat that a third RS would occupy in organisms with RS triplets (orange in Fig. 2 bottom). This structure was termed the RS3-stand in (RS3S) by Barber et al. (2012). A comparison of the Chlamydomonas RS3S to RS3 in RS triplets revealed that the basal region of RS3 and the entire RS3S are virtually identical in structure (Fig. 2), suggesting that the RS3S is a shorter homolog of RS3 (Lin et al., 2012).

Although past proteomic studies identified the protein composition of the Chlamydomonas RS pair, i.e. of RS1 & 2, the new data suggest that the proteome of RS3 has yet to be determined. RS3 may play a novel role in regulating ciliary and flagellar motility and determining its protein composition in future studies should provide valuable clues to its function.

Reference: Nicastro et al. (2006) Science 313: 944-8; Heuser et al. (2009) J Cell Biol 187: 921-33; Dymek et al. (2011) Mol Biol Cell 22: 2520-31; Barber et al. (2012) Mol Biol Cell 23: 111-20; Lin et al. (2012) Cytoskeleton [Epub ahead of print].

Quantitative Biology Bootcamp 2012

What do dinosaur DNA, calculating the global amount of carbon dioxide consumed in photosynthesis, and cooperation and cheating between yeast cells have in common?  They were all topics discussed at the sixth annual Quantitative Biology Bootcamp, held on the Brandeis campus January 12 and 13.

At the bootcamp, more than 40 Ph.D. students and faculty participated in lectures, discussions, and computational projects using both computers and pencil-on-paper approaches.  The Brandeis Quantitative Biology Program is a unique “add-on” graduate program open to students in all six of the natural sciences Ph.D. programs at Brandeis.  The main goal of the program is to train students to work effectively as a part of research teams that span the boundaries of traditional scientific disciplines.  To this end, Quantitative Biology students participate in both courses and out-of-classroom activities, like the Bootcamp, that highlight the diverse approaches to scientific problems taken by scientists from different disciplines.

A central feature of this year’s Bootcamp were the lectures and computer laboratory exercise presented by Jeffrey Boucher, a student in the Biochemistry Ph.D. program and the winner of Quantitative Biology Program’s 2012 HHMI Interfaces Scholar Award.  Boucher’s presentations described mathematical techniques and experimental methods that can be used to understand the processes of biological evolution by reconstructing genes and proteins present in the long-extinct progenitors of present animal, plant and microbial species. Prospective graduate students and others interested in learning more about Brandeis Quantitative Biology can consult the program’s web site at http://www.brandeis.edu/programs/quantbio/index.html

Otten named Damon Runyon Fellow

Renee Otten, a postdoctoral fellow in the Kern lab at Brandeis, has been awarded a November 2011 Damon Runyon Fellowship to support his postdoctoral research. Otten received his Ph.D. in 2011 from the University of Groningen, working on applying NMR spectroscopic methods to studying the relationship between protein structure and dynamics. The fellowship will support his continued efforts to use NMR to study dynamics and enzyme catalysis in protein kinases.

An Amyloid Organelle

There is a common notion that “If Nature can find a use for something, She will.” and this story has been gradually playing out for the cross-beta protein fold. Known generally as “amyloid”, the cross-beta fold was first identified in pathologies including neurodegenerative disorders such as Alzheimer’s and systemic amyloidoses such as amyotrophic lateral sclerosis (often referred to as “Lou Gehrig’s Disease”). This happenstance initially pegged the fold as a feature unique to abnormal proteins. However, it subsequently became clear that normal proteins subjected to abnormal conditions would also assume the cross-beta fold. Still, it seemed that the fold was a sign of proteins gone awry. Then came discoveries of cross-beta folds in native, functional proteins. Some are primarily extracellular bacterial proteins involved in negotiating air-water interfaces at sporulation. But some involve the intracellular packaging of proteins in humans. Now Brandeis investigators Eugenio Daviso, Marina Belenky and Judith Herzfeld, with MIT collaborators Marvin Bayro and Robert Griffin, have found that an entire organelle is assembled with the cross-beta fold.1 Gas vesicles, the pressure-resistant floatation organelles of aquatic micro-organisms, comprise a protein-encased gas bubble. Assembly and disassembly of these bodies allows the cells to navigate up and down the water column and the cross-beta fold of the protein shell lends the vesicles the strength and interfacial stability that is critical for their function.

(Left) Schematic of the architecture of a gas vesicle. The gas vesicle is a bipolar cylinder with conical end caps. The ribs of the vesicle comprise GvpA monomers assembled in a low pitch helix. The horizontal lines shown within one of these ribs illustrate the orientation of the β-strands of GvpA as determined previously by x-ray diffraction.2 The expanded view of this rib shows the contacts between β-strands that have now been detected with solid-state NMR, thus establishing the presence of a continuous cross-beta sheet.1

1.      Bayro M, Daviso E, Belenky M, Griffin RG and Herzfeld J*. An Amyloid Organelle: Solid State NMR Evidence for Cross-Beta Assembly of Gas Vesicles.  J. Biol. Chem., DOI 10.1074/jbc.M111.313049.

2.      Blaurock AE and Walsby AE (1976) Crystalline structure of the gas vesicle wall from Anabaena flos-aquae, J. Mol. Biol. 105, 183-199.

A Little Freedom Makes a Big Difference

As enzymes evolve over time, proteins of similar structure acquire small sequence changes and acquire new activities. What are the key changes in an enzyme’s structure or mechanism that allow this to happen? Researchers from the Hedstrom lab, led by former postdoc Gregory Patton, in collaboration with researchers from the Karolinska Institute, investigated this question in the case of two proteins, inosine monophosphate dehydrogenase (IMPDH) and guanosine monophosphate reductase (GMPR). The enzymes share similar structural features but carry out different reactions in a cell. Since the two enzymes are in opposing pathways, there could be severe consequences if the enzymes slip and carry out the ‘other’ reaction.

The results, published last month in Nature Cell Biology, argue strongly that the difference is based on the ability of the enzyme to switch between two conformations. A single crystal structure of human GMPR type 2 with IMP and NADPH fortuitously captures three different states, each of which mimics a distinct step in the catalytic cycle of GMPR, including states in which the cofactor (NAD or NADP) is either in an ‘in’ conformation poised for hydride transfer (below, right), or an ‘out’ conformation in which the cofactor is 6 Å from IMP (below, left).

Using mutagenesis along with kinetic experiments, the group demonstrates that the ‘out’ conformation is required for the deamination of GMP. The accessibility of this conformation at the key step in GMPR but not IMPDH seems to determine the two different outcomes — thus, the freedom of the enzyme and cofactor to carry out a conformational change determines the specificity.

An interesting question, looking at the pathways, is whether GMPR can ‘run in reverse’, catalyzing the direct amination of IMP to form GMP (and saving the cell some energy in the process).  Overexpression of GMPR does allow E. coli to survive in the absence of IMPDH and GMPS, demonstrating that GMPR-driven synthesis of GMP can support life.  Indeed, some modern organisms that live in ammonia-rich environments appear to obtain GMP by this strategy.  If life began in an ammonia rich environment as is often proposed, the ancestral purine biosynthetic pathways may have produced GMP via GMPR.

For more details, see the paper:  Patton GC, Stenmark P, Gollapalli DR, Sevastik R, Kursula P, Flodin S, Schuler H, Swales CT, Eklund H, Himo F, Nordlund P, Hedstrom L. Cofactor mobility determines reaction outcome in the IMPDH and GMPR (beta-alpha)(8) barrel enzymes. Nat Chem Biol. 2011.

Protected by Akismet
Blog with WordPress

Welcome Guest | Login (Brandeis Members Only)