Locus coeruleus catecholamines link neuroticism and vulnerability to tau pathology in aging

More than 6 million people in the U.S. are living with Alzheimer’s disease in 2022. The prevalence of this neurodegenerative disease has prompted scientists to study the factors that may increase someone’s risk for developing Alzheimer’s disease. Higher neuroticism is a well-known dementia risk factor, which is associated with disordered stress responses. The locus coeruleus, a small catecholamine-producing nucleus in the brainstem, is activated during stressful experiences. The locus coeruleus is a centerpiece of developing models of the pathophysiology of Alzheimer’s disease as it is the first brain region to develop abnormal tau protein, a hallmark feature of the disease. Chronic activation of stress pathways involving the locus coeruleus and amygdala may promote tau spread, even in cognitively normal older adults. This leads to the question of whether high-neuroticism individuals show non-optimal affective function, altered locus coeruleus neurotransmitter function, and greater tau accumulation.  Researchers in the Neurochemistry and Cognition Lab, led by Dr. Anne Berry set out to answer this question.LC blog post figurePhD candidate Jourdan Parent examined relationships among personality traits, locus coeruleus catecholamine neurotransmitter function, and tau burden using positron emission tomography imaging in cognitively normal older adults. She found that lower locus coeruleus catecholamine function was associated with higher neuroticism, more depressive symptoms, and higher tau burden in the amygdala, a brain region implicated in stress and emotional responses. Exploratory analyses revealed similar associations with low trait conscientiousness, a personality trait that is also considered a risk factor for dementia. Path analyses revealed that high neuroticism and low conscientiousness were linked to greater amygdala tau burden through their mutual association with low locus coeruleus catecholamine function. Together, these findings reveal locus coeruleus catecholamine function is a promising marker of affective health and pathology burden in aging, and that this may be a candidate neurobiological mechanism for the effect of personality on increased vulnerability to dementia.

Locus coeruleus catecholamines link neuroticism and vulnerability to tau pathology in aging. Jourdan H.Parent, Claire J.Ciampa, Theresa M. Harrison, Jenna N. Adams, Kailin Zhuang, Matthew J.Betts, Anne Maass, Joseph R. Winer, William J. Jagust, Anne S. BerryNeuroImage, 30 September 2022, 119658.


Lachman & Brandeis participating in multi-site Center for AI-technology to support aging in place

Margie LachmanThe National Institute on Aging has funded a new Center, the Massachusetts AI and Technology Center for Connected Care in Aging and Alzheimer’s Disease (MassAITC) for $20 million over 5 years. Based at the University of Massachusetts Amherst, it also includes investigators from Brigham and Women’s and Massachusetts General Hospitals, Northeastern University, and Brandeis University. Margie E. Lachman, the Minnie and Harold Fierman Professor of Psychology, is the PI of the Center’s Aging Pilot Core. This Pilot core will fund several pilot grants each year. Lachman is also director of the Lifespan Lab and the Boston Roybal Center at Brandeis.

The MassAITC focuses on  the development, validation, and translation of AI and technologies to bridge the information gap between patients, caregivers, and clinicians to support successful aging at home. The Pilot program will focus on testing technology solutions that address key risk factors facing older adults such as obesity, high blood pressure, sleep disorders, depression, loneliness, anxiety, falls, and a sedentary lifestyle. Technology-based interventions are a promising way to improve quality of life, enhance individual choices, reduce caregiver stress, and cut healthcare costs in older adults.

Additionally, Lachman recently received the Distinguished Mentorship in Gerontology Award from the Gerontological Society of America. This award is given to an individual who has fostered excellence in, and had a major impact on, the field by virtue of their mentoring, and whose inspiration is sought by students and colleagues.

Brandeisians Receive 2018 NSF Graduate Research Fellowships

NSF Graduate Research FellowshipFive Brandeisians (past and present) have received NSF Graduate Research Fellowships for 2018. Also, one current graduate student received an honorable mention.

This program recognizes and supports outstanding graduate students in NSF-supported STEM disciplines who are pursuing research-based advanced degrees at U.S. institutions. In 2018, the National Science Foundation (NSF) received over 12,000 applications, and made 2,000 award offers. This fellowship provides three years of financial support within a five-year fellowship period ($34,000 annual stipend and $12,000 cost-of-education allowance to the graduate institution).

Alyssa Garcia, a Brandeis Physics graduate student, received a fellowship. Marcelle Soares-Santos, Assistant Professor of Physics, is Alyssa’s advisor. Marcelle said “Alyssa will work on obtaining a sample of neutron star collisions with the goal of using them as standard sirens to determine the rate of expansion of the Universe.  This is very timely after the discovery of the groundbreaking neutron star collision GW170817 as the gravitational wave detectors are now being upgraded and when they come back later this year, they are expected to yield almost 10 times more detection’s per year. That wealth of data, is a very exciting prospect for a student starting their PhD career!”

Christopher Konow, a Ph.D. candidate in Chemistry, received an honorable mention. He works in the Irving Epstein lab analyzing the Turing Pattern formation in Growing Domains using the CDIMA (chlorine dioxide-iodine-malonic acid) chemical reaction.  For the NSF GRF, he proposed developing a novel self-oscillating hydrogel that could have uses in drug delivery.  He plans to start this project in late summer/early fall of 2018.

The Brandeis undergraduate alumni receiving 2018 NSF GR fellowships are:

  • Caroline Cappello graduated in 2011 with a bachelor’s degree in Environmental Studies and Theater Arts. She is a Ph.D. student in the Department of Biology at the University of Washington.
  • Emma Chad-Friedman received a BA in Psychology and Anthropology in 2014 and is in the PhD. Psychology program at the University of Maryland at College Park.
  • Jung Park also graduated in 2014 with a degree in Neuroscience and Psychology. He is currently a Ph.D. student in Neurobiology and Behavior at Columbia University.
  • Stanislav Popov received his B.S. degree in Mathematics and Chemistry only 2 years ago (2016). While at Brandeis, Stanislav worked in Isaac Krauss’ lab. He is pursuing a Ph.D. in Chemistry at UCLA.

Cross-Cultural Differences in Brain Activity of Specific and General Recognition

Results from paper

Results revealed regions in the left fusiform (left circle) and left hippocampus (right circle) emerged when comparing activity for correct same versus correct similar responses across cultures.

A recent publication from Paige, Ksander, Johndro, & Gutchess (Cortex, 2017) of the Aging, Culture, and Cognition Lab at Brandeis University has shed light on how culture affects brain activation when encoding information into memory. Prior work has suggested that culture influences how people perceive the world, including how much perceptual detail (e.g., size, shape, color, etc.) is remembered. It may not be surprising that culture shapes customs or even social interactions, but evidence also suggests that it shapes cognition. Because encoding details into memory necessitates the engagement of additional cognitive resources, comparing across cultures on the specificity of memory offers a glimpse into which processes and types of information are considered important across cultural groups.

Participants who originated from America or East Asia studied photos of everyday items in a magnetic resonance imaging (MRI) scanner and 48 hours later completed a surprise recognition test. The test consisted of same (i.e., previously seen in the scanner), similar (i.e., same name, different features; for example, a coffee mug that is a different shape or color than what the participant saw at encoding), or new photos (i.e., items not previously seen in the scanner) and participants were instructed to respond “same,” “similar,” or “new.”

Unlike other studies, culture did not disproportionately influence behavioral memory performance for specific information. However, East Asians showed greater activation in the left fusiform and left hippocampus relative to Americans for specific (items correctly recognized as same) versus general memory (items correctly recognized as similar). Additional follow-up analyses confirmed this cultural pattern was not driven by differential familiarity with the items across cultures. One possible explanation for this finding is cultural differences in prioritization of high (e.g., fine details, local information) versus low spatial information (e.g., coarser, global information). In the present study, increased activation in the left medial temporal regions for East Asians may be reflective of additional processes needed to encode specific details into memory, reflecting the greater demands of local, high spatial frequency processing. Current work in the lab is addressing this possibility.

Past work has failed to consider how cross-cultural differences can occur at both the behavioral and neural level. The present findings remedy that, suggesting that culture should be considered an individual difference that influences memory specificity and its underlying neural processes.

Paige, L. E., Ksander, J. C., Johndro, H. A., & Gutchess, A. H. (2017). Cross-cultural differences in the neural correlates of specific and general recognition. Cortex91, 250-261.


Searches for Tenure-Track Faculty in the Sciences, 2017

Brandeis has six open searches for tenure-track faculty in the Division of Science this fall, with the intent to strengthen cross-disciplinary studies across the sciences. We are looking forward to a busy season of intriguing seminars from candidates this winter.

  1. Assistant Professor of Biochemistry. Biochemistry is looking for a creative scientist to establish an independent research program addressing fundamental questions of biological, biochemical, or biophysical mechanism, and who will maintain a strong interest in teaching Biochemistry.
  2. Assistant Professor of Chemistry. Chemistry seeks a creative individual at the assistant professor level for a tenure-track faculty position in physical (especially theoretical/computational) chemistry, materials chemistry, or chemical biology.
  3. Assistant Professor of Computer Science. Computer Science invites applications for a full-time, tenure-track assistant professor, beginning Fall 2018, in the broad area of Machine Learning and Data Science, including but not limited to deep learning, statistical learning, large scale and cloud-based systems for data science, biologically inspired learning systems, and applications of analytics to real-world problems.
  4. Assistant Professor in Soft Matter or Biological Physics. Physics invites applications for the position of tenure-track Assistant Professor beginning in the fall of 2018 in the interdisciplinary areas of biophysics, soft condensed matter physics and biologically inspired material science.
  5. Assistant Professor or Associate Professor in Psychology. Psychology invites applications for a tenure track appointment at the rank of Assistant or Associate Professor, with a specialization in Aging, to start August 2018. They seek an individual with an active human research program in any aspect of aging, including cognitive, social, clinical and health psychology.
  6. Tenure Track Assistant Professor in Applied MathematicsMathematics invites applications for a tenure-track position in applied mathematics at the rank of assistant professor beginning fall 2018. An ideal candidate will be expected to help to build an applied mathematics program within the department, and to interact with other science faculty at Brandeis. Candidates from all areas of applied mathematics will be considered.

Brandeis University is an equal opportunity employer, committed to building a culturally diverse intellectual community, and strongly encourages applications from women and minorities.  Diversity in its student body, staff and faculty is important to Brandeis’ primary mission of providing a quality education.  The search committees are therefore particularly interested in candidates who, through their creative endeavors, teaching and/or service experiences, will increase Brandeis’ reputation for academic excellence and better prepare its students for a pluralistic society.

Jadhav receives NARSAD Young Investigator Grant

Assistant Professor of Psychology Shantanu Jadhav has recently been named to receive a 2015 NARSAD Young Invesigator Grant from the Brain & Behavior Research Foundation. The $70,000 award will help allow the Jadhav lab to

investigate the physiological interactions between the brain’s hippocampal and prefrontal cortex regions that support learning and memory-guided behavior. The two structures are important for different aspects of memory formation, storage, and retrieval, and impaired hippocampal-prefrontal interactions have been implicated in neurological disorders related to cognition, including memory disorders and schizophrenia.

Protected by Akismet
Blog with WordPress

Welcome Guest | Login (Brandeis Members Only)