Institutional Betrayal: The case of Campus Sexual Assault

freyd1Please join us and The Women’s, Gender, and Sexuality Studies Program for a special lecture:

Institutional Betrayal: The case of Campus Sexual Assault

Presented by Prof. Jennifer Freyd
University of Oregon
Department of Psychology

Friday, September 12, 2:00 PM
Sachar International Center, Wasserman Cinematheque

Co-sponsored by The Department of Psychology, The Women’s, Gender, and Sexuality Studies Program, The Office of the Dean of Arts and Sciences
Hosted by Prof. Ray Knight

Gina Turrigiano Named One of the “30 Most Influential Neuroscientists Alive Today”

Gina Tturrigiano405urrigiano has been named one of the “30 Most Influential Neuroscientists Alive Today” by the Online Psychology Degree Guide.

The guidelines for selecting the neuroscientists include: leadership, applicability (neuroscientists that have created technologies that have improved people’s lives); awards & recognition by the international science community and other notable accomplishments such as personal or educational achievements.

Gina Turrigiano is the author of numerous papers, has been awarded a MacArthur Foundation fellowship and the HFSP Nakasone Award, and in 2013 was elected to the National Academy of Sciences.

The “Fly on the Wall” Blog

fruit_fly_drawingBethany Christmann, a Neuroscience Ph.D. student in Leslie Griffith’s lab at Brandeis University has created a blog titled Fly on the Wall. The blog’s purpose is to introduce fly science to a broader audience of non-fly scientists. Check it out if you want to learn more about fly life, current research and how fruit fly research has already made huge contributions to understanding human biology and will continue to do so in the future.

Learn more about research in the Griffith Lab.

 

Can Self-Referencing Contribute to Memory Errors?

A recent paper in the Journal of Gerontology by Brandeis Ph.D. program alumnus Dr. Nicole Rosa and Professor Angela Gutchess attempts to answer this question. During an interview with ElderBranch, Dr. Nicole Rosa discusses the relationship between self-referencing and false memory. For more information, please read the article on ElderBranch.

Another way that flies sense temperature

If you remember your (bio-)physical chemistry, you’ll remember that most proteins are temperature sensitive. But which ones acts as the sensors that drive behavior in higher organisms? The Garrity Lab at Brandeis has been working on thermosensation in Drosophila, and previous work has implicated the channel protein TRPA1 as a key mediator of temperature preference and thermotaxis,  In a new paper in Nature, members of the Garrity lab working in collaboration with the Griffith and Theobald have have identified another protein, GR28B(D), a member of the family of gustatory receptor proteins, as another behaviorally important temperature sensor, involved in rapid avoidance of high temperatures. Authors on the paper include postdocs Lina Ni (lead author) and Peter Bronk, grad students April Lowell (Mol. Cell Biology) and Vincent Panzano (PhD ’13, Neuroscience), undergraduate Juliette Flam ’12, and technician Elaine Chang ’08.

  • Ni L, Bronk P, Chang EC, Lowell AM, Flam JO, Panzano VC, Theobald DL, Griffith LC, Garrity PA. A gustatory receptor paralogue controls rapid warmth avoidance in Drosophila. Nature. 2013.
  • story at BrandeisNOW

 

Rectifying electrical synapses in pattern-generating circuits

by Gabrielle Gutierrez

Rectifying electrical synapses are more interesting than they might seem at first. Our recent study finds that they have the potential to allow a circuit to control how robust the circuit output is to modulation of synaptic strength.

Gap junctions allow neurons to communicate quickly by serving as a direct conduit of electrical signals. Non-rectifying gap junctions probably come to mind first for most neuroscientists when they think about electrical synapses, since they are the idealized textbook variety. The electrical current that passes through the non-rectifying type of gap junction is simply a function of the voltage difference between the coupled neurons. However, this is only the case when the two hemi-channels that form a gap junction pore have the same voltage-dependencies.

Schematic shows that neurons can express diverse gap junction subunits (top left). Rectifying gap junction conductance is a function voltage difference between two neurons (top right). Bottom panel illustrates how coupled neuron output depends on the polarity of the rectifying electrical synapse and the intrinsic properties of the coupled neurons.

Schematic shows that neurons can express diverse gap junction subunits (top left). Rectifying gap junction conductance is a function voltage difference between two neurons (top right). Bottom panel illustrates how coupled neuron output depends on the polarity of the rectifying electrical synapse and the intrinsic properties of the coupled neurons.

We know from past electrophysiology studies that a single neuron can express a diverse set of gap junction hemi-channels, enabling it to form similarly diverse gap junction channels with another neuron. This could result in rectifying electrical synapses in which current flows asymmetrically between neurons so that current flow can either be permitted or restricted depending on whether the current is positive or negative. What we didn’t know were the consequences of electrical synapse rectification for a pattern-generating circuit of competing oscillators. Our recently published study in J. Neuroscience addressed this question and led us to conclude that rectifying electrical synapses can change how a neuronal circuit responds to modulation of its synapses – including its chemical synapses. Although we used a computational model for our study, our results indicate that rectifying electrical synapses in biological networks can be an important component in neuronal circuits that produce rhythmic patterns, such as those found in motor systems.

Gabrielle Gutierrez obtained her PhD in Neuroscience from Brandeis earlier this year, and is currently doing a postdoc with Sophie Deneuve at the Ecole Normale Superieure in Paris

Gutierrez GJ, Marder E. Rectifying electrical synapses can affect the influence of synaptic modulation on output pattern robustness. J Neurosci. 2013;33(32):13238-48.

Some papers from July

Between vacation and some busy weeks at work, we didn’t get much of a chance to post stuff about new science from Brandeis. To make up for it, some stuff that we noticed in July:

Relocating the active-site lysine in rhodopsin [...]: Biochemistry grad student Erin Devine uses site-directed mutagenesis to answer questions about convergent evolution. (Oprian and Theobald labs)

[...] nef2 links the Drosophila core clock to fas2, neuronal morphology, and circadian behavior [...]: Postdoc Anna Sivachenko et al. look at the links between the circadian clock and activity-dependent neuronal remodeling (Rosbash lab)

The insulin receptor cellular IRES confers resistance to eIF4A inhibition: MCB grad students Calla Olson, Marissan Donovan, and Mike Spellberg look at how translation of the insulin receptors is controlled during times of stress. (Marr lab) [story at BrandeisNOW]

Fluctuations in shear-jammed states [...] Dapeng Bi (Physics PhD ’12) and coworkers take a stat mech approach to dense granular materials (Chakraborty group)

 

Sloan-Swartz Computational Neuroscience Meeting July 26-28

sloan-swartz-illustThe annual summer meeting of Sloan-Swartz Centers for Computational Neuroscience will be held at Brandeis this weekend (July 26-28). Neuroscientists from centers at 11 major US educational institutions will convene to talk about research progress from the last year. Talks by professors, postdocs, and grad students will be held Friday through Sunday in the Shapiro Campus Center Auditorium – the schedule is online. The poster session, including posters from Brandeis undergraduates and grad students, will be held on Friday evening. All welcome to attend talks. Food available for those who have preregistered.

Protected by Akismet
Blog with WordPress

Welcome Guest | Login (Brandeis Members Only)