James Collins to receive the 2017 Gabbay Award on Oct. 18

James Collins

On Wednesday, October 18, 2017, the 2017 Jacob and Louise Gabbay Award in Biotechnology and Medicine will be given to James J. Collins from MIT. Professor Collins will be delivering his lecture entitled Synthetic Biology: Life Redesigned at 4:00pm at Brandeis in Gerstenzang 121.

Professor Collins is receiving the award “for his inventive work in synthetic biology that created a new area of research, enabling multiple biomedical applications and launching a new sector of the biotechnology industry”. He is the Termeer Professor of Medical Engineering and Science and Professor of Biological Engineering at MIT, also Core Founding Faculty at the Wyss Institute (Harvard University) and an Institute Member of the Broad Institute.

The Gabbay Award was created in 1998 by the Jacob and Louise Gabbay Foundation in order to recognize scientists working in academia, medicine or industry for their outstanding achievements developing scientific content and significant results in the biomedical sciences.

 

Rosenstiel Award lectures on Mar 22 to honor Susan Lindquist

James Haber, Director of the Rosenstiel Center, writes:

The 46th annual Rosenstiel Award for Distinguished Work in Basic Medical Research was awarded last October to Susan Lindquist (MIT), one of the most inventive and influential life scientists of our generation.  Sue tragically passed away a few weeks thereafter; in her honor we have arranged a symposium to celebrate her lab’s great legacy.  The Award talks will be held in next Wednesday, March 22, in Gerstenzang 123 from 3:30 PM to 5:30 PM, followed by a reception open to all in the Shapiro Science Center atrium.  We hope you will all come to honor Sue Lindquist and to be edified by the excellent work carried out by her former colleagues.

Angelika Amon  (Massachusetts Institute of Technology)
“The Remarkable Scientific Life of Susan Lindquist”

Leah Cowen (University of Toronto)
“Harnessing Evolution to Thwart Microbial Drug Resistance and Treat Infectious Disease”

Daniel Jarosz (Stanford University)
“Remembering the Past: A New Form of Protein-Based Inheritance”

Sandro Santagata (Brigham and Women’s Hospital)
“Heat Shock Factor (HSF1): A Powerful Driver of Malignancy”

Susan Lindquist

 

Research Funding For Undergrads: MRSEC Summer Materials Undergraduate Research Fellowships

The Division of Science wishes to announce that, in 2017, we will offer seven MRSEC Summer  Materials Undergraduate Research Fellowships (SMURF) for Brandeis students doing undergraduate research, sponsored by the Brandeis Materials Research Science and Engineering Center.

The fellowship winners will receive $5,000 stipends (housing support is not included) to engage in an intensive and rewarding research and development program that consists of full-time research in a MRSEC lab, weekly activities (~1-2 hours/week) organized by the MRSEC Director of Education, and participation in SciFest VII on Aug 3, 2017.

The due date for applications is February 27, 2017, at 6:00 PM EST.

To apply, the application form is online and part of the Unified Application: https://goo.gl/9LcSpG (Brandeis login required).


Eligibility

Students are eligible if they will be rising Brandeis sophomores, juniors, or seniors in Summer 2017 (classes of ’18, ’19, and ’20). No prior lab experience is required. A commitment from a Brandeis MRSEC member to serve as your mentor in Summer 2017 is required though. The MRSEC faculty list is: http://www.brandeis.edu/mrsec/people/index.html

Conflicting Commitments
SMURF recipients are expected to be available to do full time laboratory research between May 30 – August 4, 2017. During that period, SMURF students are not allowed to take summer courses, work another job or participate in extensive volunteer/shadowing experiences in which they commit to being out of the lab for a significant amount of time during the summer. Additionally, students should not be paid for doing lab research during this period from other funding sources.

Application Resources
Interested students should apply online (Brandeis login required). Questions that are not answered in the online FAQ may be addressed to Steven Karel <divsci at brandeis.edu>.

Pioneering geneticist Frederick Alt ’71 wins 44th Rosenstiel Award

Geneticist Frederick Alt ’71 will be awarded the 44th Rosenstiel Award for Distinguished Work in Biomedical Science by Brandeis University for his pioneering research exploring the mechanisms of genomic instability and its implications for the immune system and cancer cells. Alt is the second alumnus to win the Rosenstiel Award; the first, Rod McKinnon ’78, won the Rosenstiel in 1999 and went onto win the Nobel Prize in 2003. Learn more on Brandeis Now …

Chromosome Tethering in Yeast

On July 14, 2014, PLOS ONE  published a paper from the Haber and Kondev labs. The paper, Effect of chromosome tethering on nuclear organization in yeast, was authored by Baris Avsaroglu, Gabriel Bronk, Susannah Gordon-Messer, Jungoh Ham, Debra A. Bressan, James E. Haber, and Jane Kondev.

by Baris Avsaroglu

Chromosopone.0102474_350mes are folded into the cell nucleus in a non-random fashion. In yeast cells the Rabl model is used to describe the folded state of interphase chromosomes in terms of tethering interactions of the centromeres and the telomeres with the nuclear periphery. By combining theory and experiments, we assess the importance of chromosome tethering in determining the spatial location of genes within the interphase yeast nucleus. Using a well-established polymer model of yeast chromosomes to compute the spatial distributions of several genetic loci, we demonstrate that telomere tethering strongly affects the positioning of genes within the first 10 kb of the telomere. Further increasing the distance of the gene from the telomere reduces the effect of the attachment at the nuclear envelope exponentially fast with a characteristic distance of 20 kb. We test these predictions experimentally using fluorescently labeled genetic loci on chromosome III in wild type and in two mutant yeast strains with altered tethering interactions. For all the cases examined we find good agreement between theory and experiment. This study provides a quantitative test of the polymer model of yeast chromosomes, which can be used to predict long-ranged interactions between genetic loci relevant in transcription regulation and DNA recombination.

Is it really a double helix?

The Justice tells the story of The Wand of Inquiry, the statue that graces the lawn below the Rosenstiel Center.

Protected by Akismet
Blog with WordPress

Welcome Guest | Login (Brandeis Members Only)