Written by Zosia Busé, B.A. ’20
Joshua Trachtenberg, graduated from Brandeis in 1990 and is a leader in studying the living brain in action using advanced imaging technology. After establishing his research laboratory at UCLA, he founded a company – Neurolabware – in order to build the sophisticated custom research microscopes that are needed to perform groundbreaking work in understanding how the brain develops and how diseases and injuries interrupt its normal functioning. His company is created by scientists and for scientists, and is unique in creating high quality microscopes that are easy to use but also have the flexibility to be used in creative ways in innovative experiments, and in combination with a variety of other devices.
Brandeis University is now seeking to acquire one of these advanced microscopes that can observe fundamental processes inside the living brains of animals engaged in advanced behaviors. The resonant scanning two-photon microscope from Neurolabware allows researchers to understand and image large networks of neurons in order to visualize which cells and networks are involved with specific memories or how these processes go awry in disease. “This approach is unparalleled. There is no other technique around that could possibly touch this,” Trachtenberg says.
Previous two-photon technologies permitted only very slow imaging, allowing scientists to take a picture about every two seconds, but the resonant two-photon technology is a major breakthrough that allows scientists to take pictures at about 30 frames per second. This speed increase is a major game changer. Not only can one observe activity in the brain at a higher speed, but it is possible to take pictures at a speed that is faster than the movement artifacts that must be accounted for, such as breathing or heart beats. Because one can see the movement, it can be corrected, allowing high resolution functional imaging of structures as small as single synaptic spines in the living brain. Further, advances in laser technology and fluorescent labels now allow scientists to see deeper into the brain than ever before, compounding the recent advantages of increased speed.