Learning from how viruses assemble

Capsid image from paper

credit: eLife

Michael Hagan, Professor of Physics, is quoted extensively in the Chemical & Engineering News article, Lessons learned from watching viruses assemble. The paper discusses how scientists are studying the ability for viruses to self-assemble. During a viral infection, infected cells manufacture the genetic material and other components of the virus. These components then self-assemble, or build themselves into complex shapes, to form new viruses capable of infecting additional cells.

Many viruses contain their genetic material within a protective shell known as a capsid. Michael Hagan is one of the scientists studying how these capsids are formed by modeling the conditions and chemical properties that allow viruses to build themselves. Once understood, researchers hope this will help in drug design and delivery.

Article: Lessons learned from watching viruses assemble, Laura Howes, Chemical & Engineering News-C&EN,  December 15, 2020.

Ivanovic Receives 2017 NIH Director’s New Innovator Award

photo: Mike Lovett

Assistant Professor of Biochemistry Tijana Ivanovic has received a 2017 NIH Director’s New Innovator Award. This award is part of the NIH’s High-Risk, High-Reward Research program, designed to fund early career investigators who propose innovative and potentially transformative projects. Ivanovic will receive $1,500,000 in direct costs over five years to spearhead a research program aimed at comprehensively characterizing molecular changes in the viral cell-entry protein hemagglutinin (HA) that define pandemic influenza viruses. With the generated insights, Ivanovic hopes to ultimately be in a position to predict the pandemic potential of influenza viruses circulating in nature.

HA densely covers the influenza virion surface, where it allows the virus to both recognize and penetrate (fuse with) the cells of its host. HA is also a key target of neutralizing antibodies that protect us from influenza infection. An influenza pandemic is characterized by the adaptation of a new HA subtype to cell entry into human cells (of what was originally an avian virus). Without the pre-existing immunity to protect us, the virus quickly spreads around the globe. During pandemic adaptation, both HA functions in target-cell recognition and membrane fusion undergo key molecular changes. Ivanovic will use a custom-built Total Internal Reflection Fluorescence Microscope (TIRFM) to visualize, in real time, individual virus particles as they engage and fuse with target cell membranes. This system will allow her to obtain large-scale quantitative information about distinct HA functions at an unprecedented level of detail. She will compare avian viruses with their evolutionary offspring that infected humans, including past pandemic strains. She hopes to develop models for predicting which viruses will lead to a major flu outbreak.

Ivanovic obtained a PhD in virology from Harvard University and carried out postdoctoral research with Stephen Harrison in molecular biophysics. She integrates these diverse backgrounds in her laboratory, where members are trained across these two and other synergistic areas (such as laser microscope optics, and analytical and computational modeling). The funds from the New Innovator award have created new opportunities for hiring, and the lab is actively recruiting postdocs, PhD students (from the Biochemistry and Biophysics, Molecular and Cell Biology, and Physics graduate programs) and undergraduate researchers to undertake this ambitious program.

High resolution virus structures from electron cryo-microscopy

Professor of Biochemistry Nikolaus Grigorieff discusses recent progress in obtaining virus structures at 4 Å or better resolution from electron microscopy in a new review “Near-atomic resolution reconstructions of icosahedral viruses from electron cryo-microscopy” in Current Opinon in Structural Biology.

Protected by Akismet
Blog with WordPress

Welcome Guest | Login (Brandeis Members Only)