Another way that flies sense temperature

If you remember your (bio-)physical chemistry, you’ll remember that most proteins are temperature sensitive. But which ones acts as the sensors that drive behavior in higher organisms? The Garrity Lab at Brandeis has been working on thermosensation in Drosophila, and previous work has implicated the channel protein TRPA1 as a key mediator of temperature preference and thermotaxis,  In a new paper in Nature, members of the Garrity lab working in collaboration with the Griffith and Theobald have have identified another protein, GR28B(D), a member of the family of gustatory receptor proteins, as another behaviorally important temperature sensor, involved in rapid avoidance of high temperatures. Authors on the paper include postdocs Lina Ni (lead author) and Peter Bronk, grad students April Lowell (Mol. Cell Biology) and Vincent Panzano (PhD ’13, Neuroscience), undergraduate Juliette Flam ’12, and technician Elaine Chang ’08.

  • Ni L, Bronk P, Chang EC, Lowell AM, Flam JO, Panzano VC, Theobald DL, Griffith LC, Garrity PA. A gustatory receptor paralogue controls rapid warmth avoidance in Drosophila. Nature. 2013.
  • story at BrandeisNOW

 

Postdoc with confessed aversion to genetics

“… now inspiring a new generation of neurophysiologists”

There’s a nice story on the ADInstruments website about Stefan Pulver (PhD ’09) and Nick Hornstein (’11) and the tools they developed in the Griffith lab for “Optogenetics in the Teaching Laboratory” using Drosophila and channelrhodopsin-2. Stefan is currently in Cambridge (England) doing a postdoc, and Nick is starting his MD/PhD at Columbia real soon now.

Protected by Akismet
Blog with WordPress

Welcome Guest | Login (Brandeis Members Only)