Brandeis undergrad research on cover of Astronomical Journal

3C345CoverWithAuthors1kThe editors of the Astronomical Journal chose an image from a Brandeis research paper to adorn the cover of the February issue of the Journal (see right). What is sweet about this is that the image was made by Valerie Marchenko, a senior physics major who has been doing research since her freshman year, initially with Dave Roberts, and presently with John Wardle in the Physics Department. Several of the images in the paper were made by Valerie, and of course she is a co-author. This is actually her second publication in a mainline astronomical journal.

Roberts DH, Wardle JFC, Marchenko VV. The Structure and Linear Polarization of the Kiloparsec-scale Jet of the Quasar 3C 345. The Astronomical Journal. 2013;145(2):49.

Brandeis undergraduates publish upward of 20 papers a year in scientific journals along with their faculty, postdoc and grad student mentors.

Six scientists secure fellowships

One current undergraduate, and five alumni, from the Brandeis Sciences were honored with offers of National Science Foundation Graduate Research Fellowships in 2012. The fellowships, which are awarded based on a national competition, provide three full years of support for Ph.D. research and are highly valued by students and institutions. These students are:

  • Samuel McCandlish ’12 (Physics) , a current student who did research with Michael Hagan and Aparna Baskaran, resulting in a paper “Spontaneous segregation of self-propelled particles with different motilities” in Soft Matter (as a junior). He then switched to work with Albion Lawrence for his senior thesis research. Sam will speak about “Bending and Breaking Time Contours: a World Line Approach to Quantum Field Theory” at the Berko Symposium on May 14.  Sam has been offered a couple of other fellowships as well, so he’ll have a nice choice to make. Sam will be heading to Stanford in the fall to continue his studies in theoretical physics.
  • Briana Abrahms ’08 (Physics). After graduating from Brandeis, Briana followed her interests in ecological and conversation issues, and  in Africa as a research assistant with the Botswana Predator Conservation Trust, Briana previously described some of her experiences here in “Three Leopards and a Shower“. Briana plans to pursue as Ph.D. in Ecology at UC Davis.
  • Sarah Robinson ’07 (Chemistry). Sarah did undergraduate research with Irving Epstein on “Pattern formation in a coupled layer reaction-diffusion system”. After graduating, Sarah spent time with the Peace Corps in Tanzania, returning to study Neurosciene at UCSF.
  • Si Hui Pan ’10 (Physics) participated in a summer REU program at Harvard, and continued doing her honors thesis in collaboration with the labs at Harvard. Her award is to study condensed matter physics at MIT.
  • Elizabeth Setren ’10 was a Mathematics and Economics double major who worked together with Donald Shepard (Heller School) on the cost of hunger in the US. She has worked as an Assistant Economist at the Federal Reserve Bank of New York and her award is to study Economics at Harvard.
  • Michael Ari Cohen ’01 (Psychology) worked as a technology specialist for several years before returning to academia as  PhD student in the Energy and Resources Group at UC Berkeley.

Congratulations to all the winners!

Dynamics of double-strand break repair

In a new paper in the journal Genetics, former Brandeis postdoc Eric Coïc and undergrads Taehyun Ryu and Sue Yen Tay from Professor of Biology Jim Haber’s lab, along with grad student Joshua Martin and Professor of Physics Jané Kondev, tackle the problem of understanding the dynamics of homologous recombination after double strand breaks in yeast. According to Haber,

The accurate repair of chromosome breaks is an essential process that prevents cells from undergoing gross chromosomal rearrangements that are the hallmark of most cancer cells.  We know a lot about how such breaks are repaired.  The ends of the break are resected and provide a platform for the assembly of many copies of the key recombination protein, Rad51.  Somehow the Rad51 filament is then able to facilitate a search of the entire DNA of the nucleus to locate identical or nearly identical (homologous) sequences so that the broken end can pair up with this template and initiate local copying of this segment to patch up the chromosome break.  How this search takes place remains poorly understood.

The switching of budding yeast mating type genes has been a valuable model system in which to study the molecular events of broken chromosome repair, in real time.  It is possible to induce synchronously a site-specific double-strand break (DSB) on one chromosome, within the mating-type (MAT) locus.  At opposite ends of the same chromosome are two competing donor sequences with which the broken ends of the MAT sequence can pair up and copy new mating-type sequences into the MAT locus.

Normally one of these donors is used 9 times more often than the other.  We asked if this preference was irrevocable or if the bias could be changed by making the “wrong” donor more attractive – in this case by adding more sequences to that donor so that it shared more and more homology with the broken ends at MAT.  We found that the competition could indeed be changed and that adding more homologous sequences to the poorly-used donor increased its use.

In collaboration with Jané Kondev’s lab we devised both a “toy” model and a more rigorous thermodynamic model to explain these results.  They suggest that the Rad51 filament carrying the broken end of the MAT locus collides on average 4 times before with the preferred donor region before it actually succeeds in carrying out the next steps in the process that lead to repair and MAT switching.

Dynamics of homology searching during gene conversion in Saccharomyces cerevisiae revealed by donor competition Eric Coïc , Joshua Martin, Taehyun Ryu, Sue Yen Tay, Jané Kondev and James E. Haber. Genetics. 2011 Sep 27 2011 Sep 27

Physics students present research at 20th Annual Berko Symposium on May 16

On Monday, May 16, the Physics Department will hold the Twentieth Annual Student Research Symposium in Memory of Professor Stephan Berko in Abelson 131. The symposium will end with talks by the two Berko Prize winning students, undergraduate Netta Engelhardt and graduate student Tim Sanchez. The whole department then gathers for a lunch of cold cuts, cookies and conversation. “It’s a great way to close out the academic year,” said Professor of Astrophysics and Department Chair John Wardle. “We come together to celebrate our students’ research and hear what the different research groups are doing.”

The undergraduate speakers will describe their senior thesis honors research. This is the final step in gaining an honors degree in physics, and most of them will also be co-authors on a paper published in a mainline science journal. The graduate student speakers are in the middle of their PhD research, and will disucss their progress and their goals.

The prize winners are nominated and chosen by the faculty for making particularly noteworthy progress in their research. Graduate student winner Sanchez’ talk is titled “Reconstructing cilia beating from the ground up.” He works in Professor Zvonimir Dogic’s lab studying soft condensed matter. Undergraduate winner Engelhardt’s talk is titled “A New Approach to Solving the Hermitian Yang-Mills Equations”. She works with Professors Matt Headrick and Bong Lian (Math) on problems in theoretical physics and string theory. The schedule for Monday morning and abstracts of all the talks can be found on the Physics Department website.

Sanchez’ research very much represents the growing interdisciplinary nature of science at Brandeis. Here, a physicist’s approach is used to study a biological organism. Professor Zvonimir Dogic says of his work “He has made a whole series of important discoveries that are going to have a measurable impact on a number of diverse fields ranging from cell biology, biophysics, soft matter physics and non-equilibrium statistical mechanics.  His discoveries have fundamentally transformed the direction of my laboratory and probably of many other laboratories as well.”

Engelhardt’s research is much more abstract and mathematical, and concerns fundamental problems in string theory, not usually an area tackled by undergraduates. Professor Headrick says “Netta really, really wants to be a theoretical physicist, preferably a string theorist. She has a passion for mathematics, physics, and the connections between them.” He adds that she is utterly fearless in tackling hard problems. Netta has been awarded an NSF Graduate Research Fellowship based on her undergraduate work here.  Next year she will enter graduate school at UC Santa Barbara and will likely work with eminent string theorist Gary Horowitz, who has already supervised the PhD research of two other Brandeis physics alumni, Matthew Roberts ’05, and Benson Way ’08.

This Student Research Symposium is now in its 20th year. The “First Annual…..” (two words which are always unwise to put next to each other) was initiated in 1992 by Wardle to honor Professor Stephan Berko, who had died suddenly the previous year. Family, friends and colleagues contributed to a fund to support and celebrate student research in his memory. This provides the prize money which Netta and Tim will share.

Stephan Berko was a brilliant and volatile experimental physicist who was one of the founding members of the physics department. He was born in Romania in 1924 and was a survivor of both the Auschwitz and Dachau concentration camps. He came to the United States under a Hillel Foundation scholarship and obtained his PhD at the University of Virginia. He came to Brandeis in 1961 to establish a program in experimental physics and worked tirelessly to build up the department. Together with Professors Karl Canter (dec. 2006) and Alan Mills (now at UC Riverside) he established Brandeis as a world center for research into positrons (the anti-matter mirror image of ordinary electrons). In a series of brilliant experiments they achieved many “firsts,” culminating in election to the National Academy of Sciences for Steve, and, it has been rumored, in a Nobel Prize nomination for the three of them. Steve was as passionate about teaching as he was about research, and when he died, it seemed most appropriate to honor his memory by celebrating the research of our graduate and undergraduate students. During the coffee break on Monday, we will show a movie of Steve lecturing on “cold fusion,” a headline-grabbing but phony claim for producing cheap energy from 1989.

Keith Cheveralls ’09, Daniel Beller ’10, and Netta Engelhardt ’11 awarded NSF Graduate Research Fellowships

Former physics majors Keith Cheveralls ’09 and Daniel Beller ’10 and current physics major Netta Engelhardt ’11 have been awarded the prestigious National Science Foundation Graduate Research Fellowship. The fellowship recognizes and supports outstanding graduate students in the US who have demonstrated exceptional promise in science research. Keith is currently a first year graduate student at UC Berkeley; while at Brandeis he did his senior thesis with Professor Jane Kondev and was a co-author on a paper that appeared last year in the Proceedings of the National Academy of Sciences. Dan, a first year graduate student at the University of Pennsylvania, completed his senior thesis at Brandeis with Professor Zvonimir Dogic and Professor Robert Meyer.  Currently, Dan is conducting research on liquid crystals in the group of Professor Randall Kamien at UPenn. Netta is currently doing her senior thesis with Professor Matthew Headrick, and is planning to attend graduate school in physics next year.

Protected by Akismet
Blog with WordPress

Welcome Guest | Login (Brandeis Members Only)