Tag Archives: Replication

A conserved Mcm4 motif is required for Mcm2-7 double-hexamer formation and origin DNA unwinding

In this project, Kankowan Champasa from Stephen Bell’s lab at MIT collaborated with other researchers from the Bell and Gelles labs to study a key process that sets the stage for replication of chromosomal DNA. They explain “licensing of eukaryotic origins of replication requires DNA loading of two copies of the Mcm2-7 replicative helicase to form a head-to-head double-hexamer, ensuring activated helicases depart the origin bidirectionally.”  The researchers identified a conserved motif in the Mcm4 helicase subunit essential for formation of productive replication complexes.  Single-molecule fluorescence energy transfer experiments show that mutations in the motif still allow the two hexamers to come into contact, but they prevent the formation of the stable double-hexamers that perform the extensive DNA unwinding needed for replication.

10.7554/eLife.45538
A conserved Mcm4 motif is required for Mcm2-7 double-hexamer formation and origin DNA unwinding.
Champasa, K., Blank, C., Friedman, L.J., Gelles, J., and Bell, S.P.
eLife (2019) 8:e40576

“Mechanism and timing of Mcm2-7 ring closure during DNA replication origin licensing”

Mcm2-7 is a ring-shaped DNA helicase that plays an essential role in DNA repliction in eukaryotic cells.  Two of the helicase molecules must encircle the double-stranded DNA at a replication origin, establishing a loaded, anti-parallel double-ring complex able to start replication at the appropriate cell cycle stage.  In this study, Simina Ticau together with collaborators from Steve Bell’s lab (MIT), Jeff Gelles’ lab (Brandeis), and New England BioLabs used wild-type and mutant helicases in single-molecule colocalization (“CoSMoS”) and single-molecule fluorescence resonance energy transfer (smFRET) experiments to identify the mechanisms by which regulatory factors and nucleotide hydrolysis control ring opening and coordinate loading. This work reveals the molecular processes that serve to prevent catastrophic genome damage due to incorrect or mistimed assembly of the replicative machinery.

10.1038/nsmb.3375
Mechanism and timing of Mcm2-7 ring closure during DNA replication origin licensing
Simina Ticau, Larry J Friedman, Kanokwan Champasa, Ivan R Corrêa Jr, Jeff Gelles, Stephen P Bell
Nat. Struct. Molec. Biol. (2017) 24: 309–315.