Thermalization From Glasses to Black Holes

bangalore2Textbook thermodynamics treats equilibrium states of large systems, in which macroscopic variables (temperature, pressure and so on) remain static, and how small perturbations of such systems relax with time.  There have been a number of exciting recent developments in studying (a) how such equilibrium states are reached in a closed quantum or classical system, and (b) generalizations of thermodynamics to small systems and to systems that are intrinsically out of equilibrium.  This work spans both classical and quantum mechanics, and ties together biological systems, soft matter (such as glasses and granular systems), quantum matter, nuclear physics, quantum information, quantum gravity, and string theory.
This is clearly an area of inquiry in which contact between these different fields will lead to important advances, much as contact between condensed matter and particle physics did for the study of symmetry breaking (the source of multiple Nobel prizes, including this year’s and of the renormalization group.  We (Brandeis Physics  faculty Aparna BaskaranBulbul ChakrabortyMatthew Headrick, and Albion Lawrence) felt that an ideal way to promote this was to put together an intensive series of pedagogical lectures covering recent results in the aforementioned fields.  With the encouragement of the National Science Foundation (due in large part to Brandeis’s IGERT program in Geometry and Dynamics  we took advantage of our deep contacts with the Indian physics community to put together an Advanced Studies Institute (ASI) on thermalization, under the auspices of the new International Center for the Theoretical Sciences (ICTS)  in Bangalore, and co-organized by Chandan Dasgupta  (Indian Institute of Science), Gautam Mandal (TIFR, Mumbai), Sanjib Sabhapandit  (Raman Research Institute and ICTS), and Krishnendu Sengupta  (IACS , Kolkata).
The school was extremely successful, with beautiful lectures on cutting-edge physics from the leading experts in their respective areas.  We recommend these lectures highly to those interested in these subjects.  Links to the lecture notes, and to some related review articles, can be found here:
and there is a YouTube channel for the lectures here:

Matthew McNeely of the Physics Department wins 2013 Ennis Award

photo by Mike Lovett

photo by Mike Lovett

Matthew McNeely, an electrical engineer who has worked in the Physics Department for thirty-two years, was recently presented with the Ennis Award.  The Ennis Award recognizes an administrative employee who “has a history of consistent contributions to the well-being of the university” and “treats all members of the community with dignity and respect.”  Matt will have his name engraved on a plaque, which remains in the Physics Department over the next year and will receive a $500 check.  Matt and the other award winners were recognized for their contributions to the university at the 2013 Employee Recognition Luncheon on Nov. 22.

 

IGERT Summer Institute

 The Brandeis IGERT program is hosting its first summer institute starting Wednesday, July 31 and running weekdays through Friday, August 9. This will be a series of lectures by experts inside and outside of Brandeis, together with some student seminars, aimed at graduate students across the sciences, especially (but not exclusively!) those doing theoretical work.

The lectures will run from 9:30-4 every day, with coffee at 9am, and ample time between lectures for questions and conversations.  They will be held in room 055 of the Lemberg Academic Center (note that Domenic’s will be open at that time, so lunch is available nearby).  Those interested in attending should RSVP to Tony Bottaro (bottaro@brandeis.edu) so that we can get a head count for coffee.

The lecturers are:

Parongama Sen (University of Calcutta, Kolkata, India), lecturing on applications of statistical physics to social science problems.
Henry Cohn (Microsoft Research, New England), lecturing on symmetry and optimization.
Ben Allen (Emmanuel College and Harvard), lecturing on evolutionary dynamics
Paul Miller (Brandeis), lecturing on aspects of theoretical neuroscience.
Blake LeBaron (Brandeis), lecturing on empirical puzzles in financial data, and applications of agent-based modeling.
Albion Lawrence (Brandeis), lecturing on fiber bundles (“gauge theory”) and their applications to deformable bodies (falling cats, swimming bacteria).

In addition, we will have seminars by IGERT students:

Sumantra Sarkar
Blake Stacey
Daniel Goldstein

and a schedule can be found on this webpage:

http://www.brandeis.edu/igert/calendar/index.html

Brandeis Café Science held this Monday, June 3 with Prof. Bulbul Chakraborty

sandStrolling on the beach we notice that our feet create dry spots around them.  The sand around the leopard’s feet flows while it speeds along the desert.  Close to the ocean, we often notice dark striations on the sand.  These phenomena are so familiar to us that we hardly ever pause to wonder their origin.  The surprising fact is that we do not really understand why sand behaves the way it does.

Join us THIS Monday, June 3, at 6:00pm at the Elephant Walk in Waltham for our next Brandeis Café Science! Professor of Physics Bulbul Chakraborty will take you on a journey through the world of granular matter: matter made out of large objects for which gravity is important and temperature is not.  This is stuff that we see around all around us but know very little about.

For the last five years Prof. Chakraborty has been working on developing a theory of granular materials that can predict their collective behavior. How do sand grains assemble into sand dunes and what causes them to avalanche?  Her research has led to a new paradigm for the emergence of solid-like properties.  Prof. Chakraborty will take you along on her journey to the discovery of this new paradigm as she asks you the questions that she asked herself.

 

Asher Preska Steinberg ’13 receives NSF Graduate Fellowship

steinbergAsher Preska Steinberg ’13, who majored in both chemistry and physics at Brandeis, has been awarded a National Science Foundation Graduate Research Fellowship in materials research.  The fellowships, which are awarded based on a national competition, provide three full years of support for Ph.D. research and are highly valued by students and institutions.

At Brandeis, Asher worked on his senior thesis in chemistry with Professor Milos Dolnik as part of the Epstein Group. They studied the growth dynamics of Turing patterns in photosensitive reaction-diffusion systems. As part of the 2011 NYU MRSEC Research Experiences for Undergraduates (REU) program Asher worked with Paul Chaikin to study active colloids, and they recently published an article in Science entitled “Living Crystals of Light-Activated Colloidal Surfers”. The article received attention from the press, including the LA Times, Wired, and Ars Technica.  Last summer Asher participated in the Columbia EFRC Research Program for Undergraduates (RPU) and studied silver plasmonic nanoparticles with Louis Brus.

Asher will be attending California Institute of Technology this coming fall in the field of Chemical Physics.

Ye Zhang wins Materials Research Society Poster Award

Ye Zhang, a Postdoctoral Fellow from Prof. Bing Xu’s research group at Brandeis, won the 2012 MRS Fall Meeting Poster Awards for her poster titled Self-oscillatory Hydrogels Driven by Belousov-Zhabotinsky Reaction within the symposium on Bioinspired Directional Surfaces-From Nature to Engineered Textured Surfaces & Precision Polymer Materials-Fabricating Functional Assemblies, Surfaces, Interfaces, and Devices. The goal of the project is to make materials that operate like synthetic cardiac or intestinal muscles; feed them and they will pump forever, or as long as the arteries remain open. Ye, the poster’s lead author, is a member of the Brandeis Materials Research Science and Engineering Center (MRSEC) working on project involving the groups of Profs. Bing Xu, Irving Epstein and Seth Fraden of the Chemistry and Physics Departments.

Ye’s work focuses on the development and study of active matter based on non-linear chemical dynamics, specifically the Belousov-Zhabotinsky reaction. Beginning two years ago she systematically modified a class of gels that exhibit periodic volume oscillations which were produced by other groups. First, Ye succeeded in significantly improving the amplitude of volume oscillations. Next, she developed several novel self-oscillatory systems and established a systematic way to improve the bulk material properties of the synthetic heart.  To build a reliable beating heart, Ye optimized the molecules building the material at the molecular level of tens to hundreds of atoms, or scales of 1 nm and then figured out how to assemble them into networks of polymers on the scales of 10 – 100 nm, and then further assembled them on a longer length scale, into elastic networks on the scales of microns, and finally sculpted the resulting rubbery materials using photolithographic and microfluidic methods into useful shapes for study and application. Ye’s award is a recognition of her contribution to molecular engineering and serves as a quintessential example of the  “bottom-up” construction methods exemplified by the interdisciplinary teams of the Brandeis MRSEC.

Protected by Akismet
Blog with WordPress

Welcome Guest | Login (Brandeis Members Only)