Blanchette and Scalera et al., discover new insights into an intercellular communication method in neurons

Fruit fly neuron (magenta) with extracellular vesicle cargoes (green). Cargoes are packaged inside the neuron and, then released outside of the neuron in extracellular vesicles.

Research scientist Cassie Blanchette and Neuroscience Ph.D. student Amy Scalera, working in the Rodal lab, discovered a new mechanism of regulation of extracellular vesicles (EVs). EVs are small, membrane-bound compartments that can transfer cargoes such as DNA and proteins between cells for communication. EVs are important for normal cell-cell signaling, but they are also hijacked in neurodegenerative disease to spread toxic disease proteins to other cells. Therefore, it is crucial to understand how and where EVs are formed. Blanchette and Scalera discovered a novel method of regulation of EVs specifically at the synapses (the region of the neuron that contacts adjacent cells), using the fruit fly nervous system as an experimental model.

EVs are derived from endosomes, a network of intracellular sorting compartments that cells use to separate cargoes into different ‘packages’ with distinct inter and intracellular destinations. Blanchette and Scalera found a surprising function for the proteins that regulate endocytosis, a process in which the cell membrane buds inward, thus forming a compartment to bring cargoes to endosomes. The authors found that mutants lacking endocytic proteins lose the local pool of EV cargoes that are available for release from synapses, and instead send these cargoes for disposal elsewhere in the neuron. They hypothesized that the normal function of endocytosis  is akin to a plane circling in a holding pattern at an airport – while it waits for its time to land, it is better for the passengers to circle (between the cell membrane and endosomes), nearby their destination (release in EVs), rather than being sent to an entirely different city (a different region of the neuron). They also found that disrupting this holding pattern had consequences for the physiological functions of EV cargoes; in endocytic mutants, loss of Synaptotagmin-4, an EV cargo important for neuronal adaptability, was associated with failure of the neuron to grow in response to firing. Endocytic mutants also caused synaptic depletion of the Alzheimer’s disease associated EV cargo Amyloid Precursor Protein (APP), thus suppressing its toxicity and increasing the survival of APP-expressing flies. These discoveries raise the possibility that proteins regulating EV traffic may be targets for neurodegenerative disease therapies.

SARS-CoV-2 Nsp14 mediates the effects of viral infection on the host cell transcriptome

SARS-CoV-2 is the pathogen causing the COVID-19 pandemic, that as of early February 2022 has caused 5.7 million deaths worldwide.

When a virus infects a cell, it transforms it, so it can become a “virus factory”. To do so, it needs to suspend it from doing the normal functions, but not to a point that the immune system will detect those changes and “decide” to kill the infected cell. Understanding how viruses accomplish that is very important for virology and medicine as, for example, it could be used to help the immune system identify these cells and stop the virus from spreading through the body.

Graphical abstract for Zaffagni post

To tackle this issue, researchers identify genes that get activated or repressed when a virus infects a cell. One way to monitor the genes that are “on” or “off” during the infection is to measure RNAs abundance by RNA sequencing (RNA-seq). Through this approach, recent studies showed that SARS-CoV-2 infection induces big changes on the cells that it infects. Generally, scientists believe changes induced by viral infection are the consequence of the concerned action of the virus proteins acting within the host cell. For example, the SARS-CoV-2 genome encodes 29 proteins. The effect of the virus is so strong that it changes more than 5000 genes in just 48hs, this is almost ¼ of our genes.

How do individual viral proteins contribute to these changes? To answer this question, the Kadener lab in the Department of Biology introduced singular viral SARS-CoV-2 proteins into human cells and monitored gene expression changes through RNA-seq. Between the 26 tested proteins, non-structural protein 14 (Nsp14) was the one inducing the most dramatic effect, altering the expression of ≈4000 genes. Importantly, these changes overlap well with previously published RNA-seq data from human cells infected with SARS-CoV-2. This suggests that transient expression of Nsp14 partially recapitulates the molecular events downstream to SARS-CoV-2 infection. They also showed that a cellular enzyme (IMPDH2) mediates these changes, and that treatment with IMPDH2 inhibitors partially rescues the changes induced by Nsp14.

This research contributes to understanding the function of viral proteins on the host cell and on the molecular mechanisms that control the progression of viral infection. The Kadener lab showed that Nsp14 also modulates gene expression of the host cell by activating a cellular enzyme. These events may be conserved in other coronaviruses infections and the discovery of these molecular mechanisms may be important for designing new therapeutic approaches.

Publication:

SARS-CoV-2 Nsp14 mediates the effects of viral infection on the host cell transcriptome. Michela Zaffagni, Jenna M Harris, Ines L Patop, Nagarjuna Reddy Pamudurti, Sinead Nguyen, Sebastian Kadener.  eLife 2022;11:e71945 DOI: 10.7554/eLife.71945.

Divisional Prize Instructors design & teach new classes

The University Prize Instructorships have been a great opportunity for our graduate students to gain experience designing and teaching their own class, and a great opportunity for our undergraduates to engage in learning new areas with a great instructor. When the UPIs were put on hiatus during the pandemic, the Division of Science stepped in to keep this opportunity going for our community. We are really excited for the new courses that will be taught by Xin Yao Lin and Narges Iraji in the Spring 2022 semester- “Science versus Science Fiction” by Narges Iraji, and “Technology Use and Well-Being: Multidisciplinary Perspectives”.

Xin Yao Lin

Xin Yao LinI am very honored and delighted to receive the Divisional Prize Instructorship. I am currently a 5th-year psychology PhD student and I will be teaching a psychology course entitled “PSYC 55B: Technology Use and Well-Being: Multidisciplinary Perspectives” in the spring of 2022. The increase in technology use is changing how we connect, feel, and act. We are relying on technology more than ever, but whether the increased usage of technology is beneficial or detrimental to well-being has been controversial. Drawing on perspectives from psychology, neuroscience, computer-human interaction, and public health, this course explores the positive and negative impact of technology usage on our well-being across the lifespan. We will examine technology use in computer-mediated communication (e.g., smartphone, social media, internet, social apps), mHealth and telehealth, gaming, and other technology trends (e.g., Artificial intelligence, robots, virtual reality), and will explore how these technologies influence social life, adult development and aging, and health/health behavior (e.g., physical activity, diet, sleep).

I am very thankful for this opportunity provided by the Division of Science, and for my mentors and peers who have provided feedback and supported me along the way. I look forward to teaching this course and engaging students with how technology influences our social life, how we develop and age, and our health/health behavior.

Narges Iraji

Narges IrajiThe course Science and Science Fiction, designed for students with little to no science or math background, encourages conversations around science within the context of culture. Reading the works of science fiction by a diverse group of authors and discussing the science and imagination in them illuminates the inseparability of science from its human nature. I hope that this approach not only bridges the materials taught in class and the outside world but also sparks a curiosity that goes beyond the classroom.

Our inner urge to observe, decode patterns, and predict has existed well past the modern times and so has our passing of knowledge to the future in the form of storytelling. The combination of imagination and science is nothing new but the access to both, who can imagine and who can be a scientist, has changed throughout history. During the course, the students will read, discuss, and write about science fiction stories that inspire questions and problems which call for mathematical modeling. After becoming more familiar with some well-known mathematical models in areas such as population modeling and epidemiology, the students start working on a final project. They will formulate a question related to what they are passionate or curious about and pursue the answer using the tools that they have gained from the course. The goal is not to solve the problem, but to gain some insight into the steps required in doing so.

Teaching a University Prize Instructorship course has been a dream of mine since I heard about this opportunity in my first or second year. I am grateful for this, and thankful to all those who are helping me along the way. Numerous challenges follow developing a course, and while being one of the greatest projects that I have taken on, it has tested my patience a few times. I hope that after serving as a University Prize Instructorship instructor, I can help other graduate students who are interested in this opportunity by sharing some resources, such as information on inviting speakers or reserving classrooms with computers. My experience as a graduate student in physics and my research in the field of mathematical biology have truly led me to a new perspective. I now look around and find questions in all that I observe knowing someone else might have already started working on the answer. The course, Science and Science Fiction, encapsulates one of my attempts to pass this curiosity about the universe and life forward.

Brandeis Receives Grant to Further Collaboration with Hampton University

Irving EpsteinIn collaboration with Hampton University, an historically Black institution in Hampton, VA, Brandeis has received a $250,000 grant from the Alfred P. Sloan Foundation’s Equity-Minded Pathways to STEM Graduate Education program to create a route for Hampton students to enroll in masters degree programs at Brandeis. The program will comprise summer research internships at Brandeis for Hampton juniors and a senior-year course at Hampton jointly developed and taught by Brandeis and Hampton faculty, as well as cohort-based mentoring during the students’ masters study.  It extends the existing Brandeis-Hampton collaboration associated with our Materials Research Science and Engineering Center (MRSEC) and will be led by Profs. Irving Epstein at Brandeis and Demetris Geddis at Hampton.

First Rosbash-Abovich Award Recipients Announced

Michael Rosbash, the Peter Gruber Endowed Chair in Neuroscience and Professor of Biology and his wife, Nadja Abovich, established the Rosbash-Abovich Award as a way to inspire and acknowledge excellence in research by post-doctoral fellows and graduate students in the Brandeis life sciences. The Rosbash-Abovich award will be awarded annually.

The award honors the most outstanding papers published the previous year that have been authored by a Brandeis postdoctoral fellow and a Brandeis PhD student. In addition to the honor being selected, each winner is presented with a monetary award.

Future winners will present their talks at upcoming Volen Scientific Retreats, but due to COVID restrictions, the 2020 winners will be presenting their talks during the Molecular Genetics Journal Club meetings.

Most outstanding paper by a post-doctoral fellow

Michael O'Donnell

Michael O’Donnell, PhD

The 2020 winner for the most outstanding post-doctoral paper is Michael O’Donnell for the publication titled “A neurotransmitter produced by gut bacteria modulates host sensory behavior“. O’Donnell, is a former postdoc in the Piali Sengupta Lab. Sengupta said

Mike is a remarkable scientist and mentor. He single-handedly and independently established a new research direction in my lab. He also served as an informal mentor to many graduate students and has continued to do so even after he left my lab. I greatly appreciated our long discussions and arguments, and he is very much missed.

Sengupta also noted that O’Donnell was chosen to receive this award

on the basis of the creativity and novelty of his work that was published in Nature. The committee was particularly interested in nominating a researcher who was a driving force behind the work and Mike certainly fulfilled this criteria.

O’Donnell is now an assistant professor at Yale and recently formed the O’Donnell lab. He presented his talk to the Molecular Genetics Journal Club on December 2, 2020. He spoke about his work on neuromodulators produced by different bacteria.

Most outstanding paper by a PhD student

James Haber & Gonen Memisoglu

Professor James Haber & Gonen Memisoglu, PhD

The recipient of the 2020 award for the most outstanding PhD student paper is Gonen Memisoglu for the publication “Mec1 ATR Autophosphorylation and Ddc2 ATRIP Phosphorylation Regulates DNA Damage Checkpoint Signaling.“ She was a PhD student in James Haber’s lab. She received her PhD in 2018 and is currently a postdoctoral fellow at the University of Chicago. She will be presenting her talk at the Molecular Genetics Journal Club on February 2, 2021.

When asked about his former PhD student, Haber said

I was delighted to learn that Gonen was the recipient of the Rosbash/Abovich award for the best publication by a graduate student last year; but I had to ask “which paper” because Gonen made two important discoveries last year about the way cells respond to DNA damage. Gonen helped develop a highly efficient way to edit the yeast genome and to create dozens of very precise mutations in the Mec1 gene that is the master regulator of the DNA damage response.  When there is a chromosome break, the Mec1 protein phosphorylates a number of proteins that creates a cascade of signaling to prevent cells from progressing through mitosis until damage is repaired. Gonen discovered that the extinction of the this signal depended on Mec1’s autophosphorylation of one specific target and that changing that specific amino acid to one that could not be phosphorylated was enough to cause cells to remain arrested. She also identified several alterations of the Ddc2 protein that associates with Mec1 that were also critical for its normal activation.

During her time in my lab Gonen was a super hard-working and exceptionally insightful grad student, but also incredibly generous with her time, helping others in the lab

GreenLabs Recycling: An Innovative Answer to Lab Waste

GreenLabs Recycling

Several years ago, Brenda Lemos and David Waterman, at the time Brandeis graduate students working in Jim Haber’s lab, noticed that clean, polypropylene (#5 plastic) pipette tip boxes were being thrown away. Although never contaminated in the lab, these boxes are typically labeled “medical waste” and blocked from recycling, ultimately ending up in landfills. This is a problem given that 10 million pipette boxes are purchased each year and most often can’t be reloaded and reused. The boxes end up becoming part of the 6 million tons of plastic waste that are produced by 20,500 research institutions world-wide.

That is when the now Dr. Waterman and the future Dr. Lemos, created the GreenLabs Recycling program. Rather than the pipette boxes being disposed of in a landfill, they are now being diverted into recycling at the point of use by the people who are using them.

Pipette box binThe system works this way: GreenLabs Recycling places recycling bins at participating labs. Scientists in the labs place the pipette boxes into the recycling bins as they are used. “Participation in this program has been great. Other scientists understand the importance of recycling these materials,” David said.  Brenda and David collect the bins and bring the materials back to a facility in Acton. There the boxes are sorted by cleanliness, color and type of plastic. After sorting, the boxes are granulated and used at local manufacturers. They prefer to use Massachusetts-based manufacturers in order to reduce the environmental impact of shipping the materials.

They are currently collecting lab plastics at five locations – Brandeis, other universities, and small and large biotech companies in the area. They expect to be soon working with two additional locations.

What are the future plans for GreenLabs Recycling? David said that they would eventually like to take the recycled plastics and manufacture their own long-lasting, permanent products such as trash cans, recycling bins, and non-disposable office products.

David credits the Brandeis Innovations Sprout Program and Icorp™ Program for their support. “They have been a huge help”, he said.

GreenLabs will be participating in the Mass Innovation Nights event on Thursday, March 14. This event will be held from 6:00 to 8:00 PM at the Faculty Club and features new, innovative products from Brandeis students, alumni, and staff. This event is free and open to the public.

Protected by Akismet
Blog with WordPress

Welcome Guest | Login (Brandeis Members Only)