Brain rhythms coordinate neural networks to mediate memory-guided decision making

Significance of findings: The authors report coordination mechanisms between oscillations recorded in the CA1 subfield of the hippocampus, prefrontal cortex, and olfactory bulb and cell ensemble activity in CA1 and prefrontal cortex during odor-cued decision-making. The important findings support the hypothesis that the β rhythm plays a role in coordinating CA1-prefrontal cortex ensembles during decision-making. Sensory-guided decision-making is of broad significance to many readers who are studying executive functions and decision-making behaviors, and the observations reported in this manuscript provide convincing evidence of mechanisms that may support these functions and behaviors.

“Rhythmic coordination and ensemble dynamics in the hippocampal-prefrontal network during odor-place associative memory and decision making”. Claire A Symanski, John H Bladon, Emi T Kullberg, Paul Miller, Shantanu P Jadhav. eLife 2022, 11:e79545. DOI: 10.7554/eLife.79545

Locus coeruleus catecholamines link neuroticism and vulnerability to tau pathology in aging

More than 6 million people in the U.S. are living with Alzheimer’s disease in 2022. The prevalence of this neurodegenerative disease has prompted scientists to study the factors that may increase someone’s risk for developing Alzheimer’s disease. Higher neuroticism is a well-known dementia risk factor, which is associated with disordered stress responses. The locus coeruleus, a small catecholamine-producing nucleus in the brainstem, is activated during stressful experiences. The locus coeruleus is a centerpiece of developing models of the pathophysiology of Alzheimer’s disease as it is the first brain region to develop abnormal tau protein, a hallmark feature of the disease. Chronic activation of stress pathways involving the locus coeruleus and amygdala may promote tau spread, even in cognitively normal older adults. This leads to the question of whether high-neuroticism individuals show non-optimal affective function, altered locus coeruleus neurotransmitter function, and greater tau accumulation.  Researchers in the Neurochemistry and Cognition Lab, led by Dr. Anne Berry set out to answer this question.LC blog post figurePhD candidate Jourdan Parent examined relationships among personality traits, locus coeruleus catecholamine neurotransmitter function, and tau burden using positron emission tomography imaging in cognitively normal older adults. She found that lower locus coeruleus catecholamine function was associated with higher neuroticism, more depressive symptoms, and higher tau burden in the amygdala, a brain region implicated in stress and emotional responses. Exploratory analyses revealed similar associations with low trait conscientiousness, a personality trait that is also considered a risk factor for dementia. Path analyses revealed that high neuroticism and low conscientiousness were linked to greater amygdala tau burden through their mutual association with low locus coeruleus catecholamine function. Together, these findings reveal locus coeruleus catecholamine function is a promising marker of affective health and pathology burden in aging, and that this may be a candidate neurobiological mechanism for the effect of personality on increased vulnerability to dementia.

Locus coeruleus catecholamines link neuroticism and vulnerability to tau pathology in aging. Jourdan H.Parent, Claire J.Ciampa, Theresa M. Harrison, Jenna N. Adams, Kailin Zhuang, Matthew J.Betts, Anne Maass, Joseph R. Winer, William J. Jagust, Anne S. BerryNeuroImage, 30 September 2022, 119658.


Natasha Baas-Thomas & Don Katz Receive 2022 Gilliam Fellowship

Natasha Baas-Thomas and her thesis adviser, Donald Katz, Professor of Neuroscience have received the 2022 HHMI Gilliam Fellowship. The Gilliam Fellowship is awarded to both the graduate student and the student’s adviser with each pair receiving an annual award of $53,000 for up to three years.

The Gilliam Program goal is to assist graduate students from populations historically excluded and underrepresented in science. Recipients are chosen based upon their scientific and leadership potential, the quality of and commitment to mentorship and to the development of a more inclusive environment in the sciences.

Natasha noted “I am honored to be selected as a 2022 Gilliam Fellow. I hope to use the award to advance my leadership abilities as I work towards a professorship position. I am also excited by the mentorship focus of this award, which I can implement to improve diversity and inclusivity at Brandeis.”

Donald Katz said “I’m thrilled that the HHMI has recognized Natasha to be both a stellar scientist and a vital force for change in the field — a future leader. And I’m excited to learn from the expert mentorship training team that HHMI has put together. The Gilliam program is quite unlike anything that has come before, in the multi-pronged approach that it takes to promoting diversity and opportunity in science.”

When discussing her research plans, Natasha said “during my PhD in the Katz lab, I will be studying the gustatory system in rats. Specifically, I will be investigating the signal sent from the gustatory cortex to the motor circuit. Focusing on how the gustatory cortex guides the decision to either consume or expel a taste stimulus.”


BUPA opens applications for Invited Postdoc Research Colloquium

IPRC 2022 Speaker

The Brandeis University Postdoctoral Association (BUPA) is organizing its yearly Invited Postdoc Research Colloquium (IPRC) for the academic year 2022-2023. BUPA is inviting two senior neuroscience postdocs to Brandeis to present their research and visit the Brandeis community. Selected speakers will give an hour-long seminar, meet with faculty one-on-one, and engage in informal discussion with Brandeis postdocs over lunch and dinner. This provides a great opportunity for the speakers to receive scientific feedback and increase their visibility in the scientific community, two essential aspects for their future job search. Also, of course, this is an equally great opportunity for the Brandeis community to engage in fruitful scientific discussion and learn about exciting research performed outside of the Brandeis campus.

Interested postdocs should send an updated CV as well as an abstract of their research (maximum 250 words) to BUPA ( Seminars will be organized in person and funds for travel, accommodation and food will be provided for the speakers. Virtual presentations will be organized should the need arise. Women and underrepresented minorities are strongly encouraged to apply. The application deadline is August 31, 2022.

For additional information, please contact BUPA at

SciFest XI to be held on Thursday, 8/11/22

Save the Date for SciFest!

SciFest, the Division of Science’s annual celebration of undergraduate research, is a poster session featuring work done by undergraduates in Brandeis laboratories each summer. This is a capstone event for the undergraduate researchers where they can present the results of their research to peers, grad students, and faculty.

Join us for the SciFest XI which will be held on Thursday, August 11, 2022 in the Shapiro Science Center.

Blanchette and Scalera et al., discover new insights into an intercellular communication method in neurons

Fruit fly neuron (magenta) with extracellular vesicle cargoes (green). Cargoes are packaged inside the neuron and, then released outside of the neuron in extracellular vesicles.

Research scientist Cassie Blanchette and Neuroscience Ph.D. student Amy Scalera, working in the Rodal lab, discovered a new mechanism of regulation of extracellular vesicles (EVs). EVs are small, membrane-bound compartments that can transfer cargoes such as DNA and proteins between cells for communication. EVs are important for normal cell-cell signaling, but they are also hijacked in neurodegenerative disease to spread toxic disease proteins to other cells. Therefore, it is crucial to understand how and where EVs are formed. Blanchette and Scalera discovered a novel method of regulation of EVs specifically at the synapses (the region of the neuron that contacts adjacent cells), using the fruit fly nervous system as an experimental model.

EVs are derived from endosomes, a network of intracellular sorting compartments that cells use to separate cargoes into different ‘packages’ with distinct inter and intracellular destinations. Blanchette and Scalera found a surprising function for the proteins that regulate endocytosis, a process in which the cell membrane buds inward, thus forming a compartment to bring cargoes to endosomes. The authors found that mutants lacking endocytic proteins lose the local pool of EV cargoes that are available for release from synapses, and instead send these cargoes for disposal elsewhere in the neuron. They hypothesized that the normal function of endocytosis  is akin to a plane circling in a holding pattern at an airport – while it waits for its time to land, it is better for the passengers to circle (between the cell membrane and endosomes), nearby their destination (release in EVs), rather than being sent to an entirely different city (a different region of the neuron). They also found that disrupting this holding pattern had consequences for the physiological functions of EV cargoes; in endocytic mutants, loss of Synaptotagmin-4, an EV cargo important for neuronal adaptability, was associated with failure of the neuron to grow in response to firing. Endocytic mutants also caused synaptic depletion of the Alzheimer’s disease associated EV cargo Amyloid Precursor Protein (APP), thus suppressing its toxicity and increasing the survival of APP-expressing flies. These discoveries raise the possibility that proteins regulating EV traffic may be targets for neurodegenerative disease therapies.

Protected by Akismet
Blog with WordPress

Welcome Guest | Login (Brandeis Members Only)