What is α-synuclein when it’s not aggregated?

In a recent paper in PNAS, co-lead authors Wei Wang (Indiana U. School of Medicine) and Iva Perovic (Chemistry Ph. D. program, Brandeis), together with researchers from Brandeis, Indiana, Scripps, NIH, Washington State, and Harvard, investigated the structure of the abundant small neuronal protein α-synuclein. α-Synuclein has been strongly associated with the disease process in Parkinson disease, both from histology (found in aggregates in Lewy bodies associated with disease) and from genetics (mutations in the gene associated with a rare familial form of Parkinson disease). The structure and function of α-synuclein is not well understood. It is an abundant neuronal protein, and appears to bind to lipids, vesicles, and plasma membrane. Heterologously expressed α-synuclein is often observed to be unfolded, and the biochemical role of the protein is still unidentified.

In this new study, α-synuclein was expressed as a GST fusion protein in E. coli and proteolytically cleaved to form α-synuclein with a 10 amino acid N-terminal extension. This protein was shown to form a stable tetrameter with alpha-helical content in the absence of lipids, using a combination of many techniques, including NMR spectroscopy, electron microscopy, circular dichroism and mass spectroscopy of cross-linked products. The authors combined this information to propose a model for the structure of native α-synuclein when it is not aggregated that is a tetramer based on amphipathic central helices.

Researchers in the Pochapsky, Petsko-Ringe and Agar labs at Brandeis participated in the study. Future work is aimed at understanding the function of this tetrameric form of the protein, with the hope of developing techniques to stabilize it and determine its function. For more information and interview with the authors, see the story at BrandeisNOW.

 

Sprout Grant Winners 2011

Entrepreneurship is alive and well at Brandeis.

Last week, fourteen teams of Brandeis scientists presented their research to a panel of industry experts to compete for funding from the Brandeis University Virtual Incubator Sprout Grant Program.  The Virtual Incubator seeks to nurture and support entrepreneurial scientists at Brandeis by providing education, mentoring, networking and seed grants to help move their discoveries from the laboratory to the market.

Judges were impressed by the team presentations. The teams ranged from biologists who have projects that could be ready for licensing as early as next year, to computer science / IT entrepreneurship students with a web application that already has 1200 users.

“We were overwhelmed by the phenomenal proposals we received” says Irene Abrams, Associate Provost for Innovation.  “The response was incredible – with only a few weeks notice, 23 teams applied for Sprout Grants and 14 presented their proposals to the panel of judges.  I was impressed by the level of creativity among the applicants, and by the hard work the teams put into the presentations.  We only had $50,000, so we had to turn down many excellent applications, which we would have funded if we had more money.”

The 2011 winning projects are:

  • Generation Of A Rapid And Efficient Protein Knockout System, Lead Scientist:  Erin Jonasson (with Satoshi Yoshida)
  • Identification Of Molecules For Stabilizing DJ-1, A Protein Involved In Parkinson And Alzheimer Diseases. Lead Scientist: Joey Salisbury (with Brian Williams, Ala Nassar, Jeff Agar and Greg Petsko)
  • Targeting Oncogenic Ras For Protein Degradation, A Novel Approach To Therapy. Lead Scientist: Rory Coffey (with Marcus Long, Ruibao Ren, and Liz Hedstrom)
  • Identifying Pharmacological Chaperones that Promote Survival in Mouse Models of ALS, Lead Scientist: Jared Auclair (with Joey Salisbury, Dagmar Ringe, Greg Petsko, and Jeff Agar)
  • A Novel, Low Cost, Highly Sensitive Form Of Suppression PCR, Lead Scientist: Ken Sugino (with Sean O’Toole and Sacha Nelson)
  • Zen.Do, Team: Bill DeRusha, Joshua Silverman, Jason Urton (Computer Science)

see also: Brandeis NOW

Can a “chemical rope” help treat ALS?

In this week’s issue of PNAS, Brandeis postdoc Jared Auclair and Chemistry grad student Kristin Boggio, together with Professors Greg Petsko, Dagmar Ringe, and Jeffrey Agar discuss Strategies for stabilizing superoxide dismutase (SOD1), the protein destabilized in the most common form of familial amyotrophic lateral sclerosis. Working from the hypothesis that the mechanism of the toxicity involves dimer destabilization and dissociation as an early step in SOD1 aggregation, they looked for mechanisms to stabilize SOD1 using chemical cross-linking. Cross-linking the dimer using 2 adjacent cysteine residues results in substantial stabilization of relevant SOD1 mutants.

A "Chemical rope" stabilizes SOD1 protein. Mutations that destabilize SOD1 in motor neurons are associated with familial ALS

Read more about Prof. Agar, this research, and its potential for this technique in the treatment of ALS at Brandeis NOW

New in Pubmed

Have no time to write News and Views, but there are a few new papers from our labs that have recently popped up in Pubmed.

Protected by Akismet
Blog with WordPress

Welcome Guest | Login (Brandeis Members Only)