Grace Han named Landsman Career Development Chair in the Sciences

Grace Han, Assistant Professor of Chemistry, has been appointed the Landsman Career Development Chair in the Sciences. Lisa Lynch, Provost and Dorothy Hodgson, Dean of Arts and Sciences, noted that Han’s work as a “scholar, a teacher, and an advisor, makes [her] highly deserving of the Landsman Chair.”

Grace directs the Han Group at Brandeis. This lab, whose scientific inquiry focuses on light-matter interaction in various material systems that range from photo-switching molecules to inorganic 2D crystals.  Her team seeks to develop optically-controlled molecular switches for energy conversation and storage and optoelectronic applications.

Grace’s research has resulted in a project, “Optically-Controlled Functional Heat Storage Materials,” which was featured in Chemical and Engineering News upon being granted Brandeis SPROUT Awards in 2019 and again in 2020.  In this work, the Han Group developed materials that recycle waste heat from a running engine and warm up frozen oil upon triggering to facilitate car startups in northern climes.  The Han Group is currently developing the initial prototype for the device containing the functional energy material.

At Brandeis, Grace teaches “Inorganic Chemistry,” “Polymer and Inorganic Materials Chemistry,” and “Chemistry Colloquium.”  She is co-chair of the Graduate Student Admissions Committee and of the Departmental Colloquium Committee and is also a member of the Graduate Studies Committee. Grace has most recently co-authored articles for the Journal of the American Chemical Society, Chemistry of Materials, and ACS Nano.

The Landsman Chair was established in 2015 through a gift from Dr. Emanuel Landsman. The Landsman Chair reflects his deep commitment to nurturing rising young scientists.

Longtime supporters of the University, Manny and his wife, Sheila Landsman, also gifted the funds used to build the Landsman Research Facility. This is the structure that houses an 800 MHz magnetic resonance spectrometer. The 15,000-pound superconducting magnet is used by scientists to search for solutions to neurodegenerative diseases and cancer.  Dr. Landsman co-founded the American Power Conversion Corporation, served on the Brandeis University Science Advisory Council for many years, and was named a Brandeis Fellow in 2008.  The Landsmans’ grandson, Wiley Krishnaswamy, is a member of the Class of 2020.

Bruce Foxman Elected American Crystallographic Association Fellow

Bruce FoxmanThe American Crystallographic Association (ACA) has elected Bruce Foxman, Professor of Chemistry Emeritus, as a member of the 2020 class of ACA Fellows. The ACA recognized his leadership of the solid-state chemistry research community and his research in topotactic relationships, solid-state dimerization and polymerization, and polymorphism. Foxman has also contributed extensively to the development of new methods for X-ray crystal structure determination. Bruce joined the Brandeis faculty in 1972 and is still research-active and also collaborating with many colleagues at Brandeis and elsewhere. He is a superb teacher (2009 Brandeis Prize for Excellence in Teaching) and has developed widely-used downloadable tutorials on Symmetry and Space Groups and An Introduction to X-ray Structure Determination for High School Students.

Hedstrom Receives NIH Director’s Transformative Research Award

Liz HedstromBrandeis University chemical biologist Lizbeth Hedstrom received one of nine Director’s Transformative Research Awards this year from the National Institutes of Health under its High-Risk, High-Reward Research Program.  The 5-year, $3.5 mil grant will support the development of new methods for drug design relying on targeted protein degradation.  This emerging strategy has several potential therapeutic advantages over traditional approaches, including the development of more potent, longer acting, drugs.

The rational design of ‘degraders’ has focused almost exclusively on degradation induced when the target protein is modified with ubiquitin.  In contrast, Hedstrom will be developing ubiquitin-independent strategies.

Meet the Science UDRs at the Ultimate Science Navigation Event (9/23)

Ultimate Science Navigation posterAt The Ultimate Science Navigation event TOMORROW (9/23), students can collaborate with the science UDRs to learn about the different offerings in the sciences, how to navigate each major/minor, what each major/minor has to offer, all with an emphasis on exploring the intersections between different programs in the sciences. We will have UDRs representing biochemistry, biology, neuroscience, chemistry, physics, and biophysics!

Students can join in the morning on Zoom from 9:30-10AM, or for the rest of the day through the new Brandeis science community Slack workspace to discuss their questions related to the majors with the UDRs! Email Lance Babcock (lbabcock@brandeis.edu), Maggie Wang (maki@brandeis.edu) or the other science UDRs for the Zoom link and Slack workspace link.

SPROUT and I-Corps Applications are Open

Sprout logoThe Brandeis Innovation SPROUT and I-Corps programs offer support for bench and non-bench research. Both programs offer funding in different amounts, mentorship, training and help in further exploring the commercial potential of inventions. SPROUT supports bench research, while I-Corps emphasizes training for both bench and non-bench researchers in developing the commercial potential of discoveries, with small grants and extensive training programs. You can apply to one or both programs.

  • If you have a technology / solution that you have started developing and you would like to get funding for it via SPROUT and/or I-Corps, then please complete this form
  • If you do not already have a technology, then you can complete this form to qualify for the I-Corps training program and be matched with a team

Icorps logo

SPROUT teams will get the chance to qualify for up to $30,000 in funding. The I-Corps program provides entrepreneurial training and covers the core of commercializing a technology or building a startup. It comes with an NSF $750 travel and training stipend and an NSF I-Corps certificate/digital badge.

Apply by February 25, 2020 at 11:59PM

Student Research Results in Recent JIB Paper

Images from research paper from Pochapsky and Lovett labsBy Thomas Pochapsky, Professor of Chemistry & Biochemistry

We don’t usually consider PineSol, Vick’s VapoRub and Lemon Pledge as food, but it is a good thing that some bacteria can.  The active components of those products are terpenes, small organic molecules that are produced by evergreens to repel insects, promote wound healing and prevent infection.  The bacteria that can use terpenes as food are a critical part of the forest ecosystem:  Without them, the soil would rapidly become saturated with toxic terpenes.  Members of the Pochapsky and Lovett laboratories in Chemistry and Biology are curious about what enzymes are involved in terpene metabolism.  In particular, why would one bacterial strain feast on a particular terpene (camphor, for example) while ignoring others?

The first step in terpene breakdown by bacteria is often the addition of an oxygen atom at a particular place in the terpene molecule, providing a “handle” for subsequent enzymes in the breakdown pathway.  The enzymes that catalyze these oxygenation reactions are called cytochromes P450.  P450 enzymes perform important reactions in humans, including steroid hormone biosynthesis and drug metabolism and activation.  Human P450s are targets for cancer chemotherapy and treatment of fungal infections.  A specific inhibitor of P450 is a component of the AIDS “cocktail” treatment, slowing the breakdown of the other cocktail components so the drugs do not have to be taken as often.

Despite the importance and wide scope of the P450 enzyme family, we don’t know much about how a particular P450 goes about choosing a molecule to work on (the substrate) or where it will put the oxygen (the product).  This is what the Brandeis labs are interested in finding out.  What particular sequence of amino acids gives rise to the substrate/product combination of a given P450? Answers to this question will aid in drug design and bio-engineering projects.

The project employs multiple scientific techniques in order to get at the answers to these questions, including bacterial genome sequencing, messenger RNA transcription, enzyme isolation, activity assays, mass spectrometry and enzyme structure determination.  As complicated as it sounds, though, the project lends itself nicely to undergraduate research:  Three of the authors on this paper are undergraduates, Phillix Esquea ‘18, Hannah Lloyd ’20 and Yihao Zhuang ’18.  Phillix was a Brandeis Science Posse recruit, and is now working with a Wall Street investment bank in NYC.  Yihao is enrolled in graduate school at the University of Michigan School of Pharmacy, and Hannah Lloyd is still at Brandeis, continuing her work on the project.  Even high school students got in on the act:  Teddy Pochapsky and Jeffrey Matthews are both seniors at Malden Catholic High School, and collected soil samples used for isolation of terpene-eating bacterial strains.  (One of the newly isolated bacterial strains is named in their honor, Pseudomonas strain TPJM).

“A new approach to understanding structure-function relationships in cytochromes P450 by targeting terpene metabolism in the wild.” Nathan R.Wong, Xinyue Liu, Hannah Lloyd, Allison M. Colthart, Alexander E. Ferrazzoli, Deani L. Cooper, Yihao Zhuang, Phillix Esquea, Jeffrey Futcher, Theodore M. Pochapsky, Jeffrey M. Matthews, Thomas C. Pochapsky.  Journal of Inorganic Biochemistry. Volume 188, November 2018, Pages 96-101.  https://doi.org/10.1016/j.jinorgbio.2018.08.006.

Protected by Akismet
Blog with WordPress

Welcome Guest | Login (Brandeis Members Only)