How bacteria resist fluoride

Fluoride anion is everywhere.  Released into water through the natural weathering of rocks, it’s present to the tune of 5 mM in toothpaste, 30 μM in Cape Cod bay, and 17 μM in Massell pond at Brandeis.

Fluoride levels in our environment (graph).001

Fluoride in the environment, measurements by Ashley Brammer (Miller lab)

Since F is ancient, ubiquitous and toxic to microbes, it’s not surprising that bacteria have evolved defenses to expel it from their cytoplasm.   In an article published in eLife on August 27, 2013, Randy Stockbridge, Janice Robertson, and Luci Partensky from Chris Miller’s lab describe one of these microbial defenses, a fluoride channel called Fluc.  The channel provides a pathway for F to exit the cell across the membrane at a rate of 107 ions per second, while rigorously excluding Cl in order to avoid catastrophic membrane depolarization. The world-record 10,000-fold selectivity isn’t the only remarkable aspect of Fluc, however. The Fluc channel is built on an antiparallel dimer scaffold, with one of the subunits facing the exterior of the cell, and the other facing the interior. Only one other modern-day membrane protein is known to dimerize like this, but the arrangement recalls the inverted structural repeats that are a common, important motif for membrane transporters. Inverted repeats are the product of an antiparallel dimer, like Fluc, that duplicated and fused eons ago.  The sequences drifted over time until the duplication was undetectable by sequence similarity, and the plethora of membrane transport proteins built on this plan was only discovered when the 3-D structures were solved. The Fluc family provides the opportunity to study microorganism resistance to an ancient xenobiotic, as well as membrane protein architecture from an evolutionary origin.

For more, you should read the paper:

Stockbridge RB, Robertson JL, Kolmakova-Partensky L, Miller C. A family of fluoride-specific ion channels with dual-topology architecture. eLife. 2013;2(0):e01084. PMCID: 3755343.

PS: If you’re wondering about the tea on the bar graph, tea plants accumulate F in their leaves.  Cheap teas, made from older tea leaves, actually carry a lot of F, and if you drink a couple quarts of lousy tea a day, you can give yourself skeletal fluorosis.

Riboswitches and fluoride

Ronald Breaker (Yale and HHMI) gave an inspiring talk today to kick off this year’s Biochemistry-Biophysics Friday Lunchtime Pizza Talks series, discussing his lab’s work on Riboswitches: Biology’s Ancient Regulators. If you missed the talk, here’s a review that might help you catch up.

Breaker ended the talk by discussing the fluoride-sensing riboswitch, and pointing to the new avenues for research to which this called attention. Coincidentally(?), a new paper in PNAS is out today from Chris Miller‘s lab here at Brandeis on exactly that — take a look at Stockbridge et al., Fluoride resistance and transport by riboswitch-controlled CLC antiporters.


Bacteria have RNAs that sense fluoride, and channels that tranport it

Fluoride: unless you’re a synthetic chemist or a dentist, you probably don’t worry about this ion very often.  But, according to a new paper published in Science, bacteria do, and have done for a very long time.

The work, spearheaded by Ron Breaker’s group at Yale University, identified a novel RNA motif that selectively binds fluoride ion.  In response to Fbinding, this motif, called a riboswitch, undergoes a structural change that leads to increased transcription of downstream genes.  These genes encode crucial metabolic enzymes that are strongly inhibited by fluoride ion, like enolase and pyrophosphatase, as well as members of a family of chloride transport proteins, the CLC’s.  The CLC’s that are associated with F riboswitches are clustered together in a phylogenetic clade distant from well-characterized CLC’s.  Could these “chloride” channel proteins actually assist with fluoride export?  Randy Stockbridge, a Brandeis postdoc working in Chris Miller’s lab, contributed to the findings by showing that this subset of riboswitch-associated CLC’s do, in fact, transport F, whereas “conventional” CLC’s strictly exclude F.   The F riboswitches, and the F CLC’s, are found among a huge variety of bacteria and archaea, from plant and human pathogens to benign soil and seawater-dwelling bugs, leading to the inference that F toxicity has been a consistent evolutionary pressure.

You’re probably wondering just how much fluoride there is in the environment.  Fluoridated municipal drinking water contains about 80 micromolar F, and natural F- concentrations in the environment can be  higher and lower than that number.   In acidic environments especially, F might accumulate to much higher levels in bacteria.  With a pKa of 3.4, a small amount of F is present as HF at low pH, and the uncharged HF can diffuse cross the cell membrane into the cell.  Once in the cytoplasm, where the pH is around 7, HF dissociates, and F can’t diffuse across the membrane back into the environment.  Unless, of course, evolution has provided that bacterium a system to transport F out of the cell…

see also

Protected by Akismet
Blog with WordPress

Welcome Guest | Login (Brandeis Members Only)