Eapen wins HHMI International Student Research Fellowship

Vinay Eapen from the Haber Lab in Biology has been awarded an HHMI International Student Research Fellowship. These fellowships, highly sought-after, are among the few available to international students studying at major research universities in the US – there were only 42 recipients nationwide. Eapen is a graduate student entering his fourth year in the Molecular and Cell Biology PhD program at Brandeis, and already has 4 publications from Brandeis to his credit resulting from his studies of the DNA damage checkpoint and autophagy in yeast.

 

Haber 70th Bday Symposium on May 31/Jun 1

Jim Haber as a young professorWe’re holding a 70th Birthday Celebration for Jim Haber on Friday and Saturday this week (May 31 and June 1, 2013). Haber lab members past and present, as well of some of Jim’s colleagues and collaborators, will be giving talks to celebrate the occasion. Come learn about DNA repair and wish Jim a happy birthday! Talks will be held in the Shapiro Campus Auditorium, starting with keynote speaker Fred Alt at 1:15 Friday. The full speaker list is available.

Looking for Fun(30)

A recent paper from the Haber lab by Eapen et al., “The Saccharomyces cerevisiae Chromatin Remodeler Fun30 Regulates DNA End Resection and Checkpoint Deactivation“, is the most read paper from the journal Molecular and Cell Biology for October 2012. Join the fun, read the paper!

Damaged DNA and self-eating (autophagy) in budding yeast.

Chromosome double-strand breaks (DSBs) threaten the integrity of the genome. Cells respond to DSBs by activating the DNA damage checkpoint that blocks cells prior to mitosis, allowing more time for the repair of damaged DNA. When the DSB can be repaired, the cell cycle checkpoint is turned off so that cells can resume cell cycle progression, a process termed recovery. If the DSB remains unrepaired, G2/M arrest persists for a long time but eventually cells adapt and – despite the persistent DNA damage – complete mitosis and divide. Much of our understanding of the DNA damage response has come from the study of the budding yeast Saccharomyces cerevisiae, where it is possible to create DSB damage synchronously in all cells of the population. This can be accomplished either by uncapping telomeres, exposing their normally protected ends or by creating a single, defined DSB by inducing the site-specific HO endonuclease. From such studies, it was possible to identify a highly evolutionarily conserved DNA damage sensing and signaling cascade that is initiated by Mec1, the yeast homolog of mammalian ATR protein kinase (reviewed in Ref. (1)). Yeast genetic approaches revealed a number of adaptation-defective mutants, a subset of which also are recovery-defective. Previous studies also demonstrated that triggering the DNA damage checkpoint affects not only mitosis and the efficiency of DNA repair within the nucleus; it also affects cytoplasmic responses (2, 3). In a new paper from the Haber lab published in PNAS, we uncovered mutations in the Golgi-Associated Retrograde Protein (GARP) complex that are adaptation-defective. We show that the defect in these mutants can be mimicked by activating the cytoplasm-to-vacuole (CVT) pathway of autophagy that prevents the nuclear accumulation of separase, Esp1, in the nucleus, thus preventing the cells both adapting and recovering from DSB damage.

In budding yeast, a single unrepaired double-strand break (DSB) triggers the Mec1-dependent cell cycle arrest prior to anaphase for 12-15 before they adapt. Adaptation is accompanied by the loss of hyperphosphorylation of Rad53, yeast’s Chk2 homolog.  Rad53 remains phosphorylated in a number of adaptation-defective mutations, including deletion of the two PP2C phosphatases, ptc2ptc3D, that normally dephosphorylate Rad53.  Adaptation is also blocked by ablating a number of proteins with diverse roles in DSB repair, including srs2D, rdh54D as well as by a mutation in yeast’s polo kinase cdc5-ad.

In our paper, we find that hyperactivation of the cytoplasm-to-vacuole (CVT) autophagy pathway causes the permanent G2/M arrest of cells with a single DSB that is reflected in the nuclear exclusion of both separase, Esp1, and its chaperone/inhibitor, securin, Pds1(See figure).  Autophagy in response to DNA damage can be induced in three different ways: (1) by deleting members of the Golgi-Associated Retrograde Protein complex (GARP) such as vps51D; (2) by adding rapamycin; or (3) by overexpressing a dominant-negative ATG13-8SA mutation.  The permanent checkpoint-mediated arrest in any of these three conditions can be overcome in three ways: (1) by blocking autophagy with mutations such as atg1D, atg5D or atg11D; (2) by deleting the vacuolar protease Prb1 or its activator, Pep4; or (3) by driving Esp1 into the nucleus with a SV40 nuclear localization signal.  In contrast, these same alterations fail to suppress the adaptation defects of ptc2ptc3D or cdc5-ad.  Transient accumulation of Pds1 in the vaucole is also seen in wild type cells lacking PEP4 after induction of a DSB.  Unlike other adaptation-defective mutations, G2/M arrest persists even as the DNA damage-dependent phosphorylation of Rad53 diminishes, suggesting that cells have become unable to activate separase to initiate anaphase after DNA damage.  In addition, we have found that cells fail to recover when VPS51 is deleted or when ATG13-8SA is overexpressed.

Increased autophagy causes the delocalization of both Pds1 (securin) and Esp1 (separase) from the nucleus in checkpoint-arrested budding yeast cells. A. GFP-tagged Pds1 and Esp1 localize to the nucleus at the neck of G2/M-arrested wild type (WT) cells that have suffered a single unrepaired chromosome double-strand break (DSB). Both rdh54Δ and vps51Δ prevent cells from adapting and resuming cell cycle progression, but only ablating Vps51 – part of the Golgi-associated retrograde protein (GARP) complex – causes the mislocalization of Pds1 and Esp1 and the partial degradation of Pds1 by vacuolar proteases. Preventing degradation of Pds1 (and possibly other mitotic regulators) results in the suppression of permanent arrest and the relocalization of sufficient Esp1 into the nucleus to release cells from their pre-anaphase arrest. A similar suppression of arrest in vps51Δ cells is obtained by disabling autophagy (not shown). B. Induction of autophagy by overexpression of ATG13-8SA (6) prevents adaptation in wild type cells. Expression of ATG13-SA was induced at the same time that a single, unrepairable DSB was created. Whereas normal cells adapt by 24 h, increased autophagy prevents cells from progressing beyond the G2/M stage of the cell cycle. Deletion of the PEP4 gene that activates vacuolar proteases or ATG1 that is required for autophagy suppresses the arrest and allows cells to divide and resume cell cycle progression.

Taken together with other recent results (4, 5), these observations emphasize that the DNA damage response can trigger the mislocalisation and cytoplasmic proteolysis of important nuclear proteins that regulate DNA repair and cell cycle progression. These results broaden our perspective on the ways in which cells respond to DNA damage and delay cell cycle progression while such damage persists.

Ex MCB grad Farokh Dotiwala, current MCB grad Vinay Eapen and ex-postdoc Jake Harrison were the co-first authors on this paper. Assistant professor Satoshi Yoshida also contributed significantly to this project.

Dotiwala F(*), Eapen VV(*), Harrison JC(*), Arbel-Eden A, Ranade V, Yoshida S & Haber JE (2012) DNA damage checkpoint triggers autophagy to regulate the initiation of anaphase, PNAS (Published online before print November 19, 2012, doi: 10.1073/pnas.1218065109)

1.         Harrison JC & Haber JE (2006) Surviving the breakup: the DNA damage checkpoint. Annu Rev Genet 40:209-235.
2.         Dotiwala F, Haase J, Arbel-Eden A, Bloom K, & Haber JE (2007) The yeast DNA damage checkpoint proteins control a cytoplasmic response to DNA damage. Proc Natl Acad Sci U S A 104(27):11358-11363.
3.         Smolka MB, et al. (2006) An FHA domain-mediated protein interaction network of Rad53 reveals its role in polarized cell growth. J Cell Biol 175(5):743-753.
4.         Robert T, et al. (2011) HDACs link the DNA damage response, processing of double-strand breaks and autophagy. Nature 471(7336):74-79.
5.         Dyavaiah M, Rooney JP, Chittur SV, Lin Q, & Begley TJ (2011) Autophagy-dependent regulation of the DNA damage response protein ribonucleotide reductase 1. Mol Cancer Res 9(4):462-475.
6.         Kamada Y (2010) Prime-numbered Atg proteins act at the primary step in autophagy: unphosphorylatable Atg13 can induce autophagy without TOR inactivation. Autophagy 6(3):415-416.

iBiomagazine and iBioseminars

Some video resources if you need to explain scientific topics to students (or need something explained to you!)

iBioMagazine.org features short (<15 min) talks that highlight the human side of research. iBioSeminars.org provides approximately hour-long seminars by high profile researchers.

Professor Emeritus of Biology Hugh Huxley discusses the sliding filament theory of muscle contraction in a November 2011 video from iBiomagazine.org

 

 

Professor of Biology Jim Haber discusses Mechanisms of DNA Repair in a 2009 video from iBioseminars.org

 

Dynamics of double-strand break repair


In a new paper in the journal Genetics, former Brandeis postdoc Eric Coïc and undergrads Taehyun Ryu and Sue Yen Tay from Professor of Biology Jim Haber’s lab, along with grad student Joshua Martin and Professor of Physics Jané Kondev, tackle the problem of understanding the dynamics of homologous recombination after double strand breaks in yeast. According to Haber,

The accurate repair of chromosome breaks is an essential process that prevents cells from undergoing gross chromosomal rearrangements that are the hallmark of most cancer cells.  We know a lot about how such breaks are repaired.  The ends of the break are resected and provide a platform for the assembly of many copies of the key recombination protein, Rad51.  Somehow the Rad51 filament is then able to facilitate a search of the entire DNA of the nucleus to locate identical or nearly identical (homologous) sequences so that the broken end can pair up with this template and initiate local copying of this segment to patch up the chromosome break.  How this search takes place remains poorly understood.

The switching of budding yeast mating type genes has been a valuable model system in which to study the molecular events of broken chromosome repair, in real time.  It is possible to induce synchronously a site-specific double-strand break (DSB) on one chromosome, within the mating-type (MAT) locus.  At opposite ends of the same chromosome are two competing donor sequences with which the broken ends of the MAT sequence can pair up and copy new mating-type sequences into the MAT locus.

Normally one of these donors is used 9 times more often than the other.  We asked if this preference was irrevocable or if the bias could be changed by making the “wrong” donor more attractive – in this case by adding more sequences to that donor so that it shared more and more homology with the broken ends at MAT.  We found that the competition could indeed be changed and that adding more homologous sequences to the poorly-used donor increased its use.


In collaboration with Jané Kondev’s lab we devised both a “toy” model and a more rigorous thermodynamic model to explain these results.  They suggest that the Rad51 filament carrying the broken end of the MAT locus collides on average 4 times before with the preferred donor region before it actually succeeds in carrying out the next steps in the process that lead to repair and MAT switching.

Dynamics of homology searching during gene conversion in Saccharomyces cerevisiae revealed by donor competition Eric Coïc , Joshua Martin, Taehyun Ryu, Sue Yen Tay, Jané Kondev and James E. Haber. Genetics. 2011 Sep 27 2011 Sep 27

Protected by Akismet
Blog with WordPress

Welcome Guest | Login (Brandeis Members Only)