The ancient insect nose

In a recent short article in The Journal of Experimental Biology titled JUMPING BRISTLETAILS – A GLIMPSE INTO THE ANCIENT INSECT NOSE“, postdoc Katherine Parisky discusses the evolution of the olfactory system in insects.

In order for aquatic organisms to have made the transition from living in water to surviving on land, mutations in several physiological processes needed to occur. For one sensory system, that of smell, olfactory brain structures that detect odors based on sensing air-borne, volatile and hydrophobic molecules evolved from structures that had the ability to detect aqueous hydrophilic solutions […]

Read more at http://jeb.biologists.org/content/214/23/vi.full

Quantitative Biology Lecture Prize

The Quantitative Biology Program at Brandeis University, supported by a grant from Howard Huges Medical Institute, is now soliciting applications for an award for preparing an outstanding set of three pedagogical lectures on a subject at the interface of the physical and biomedical sciences.  These lectures will be given at the Quantitative Biology Boot camp, January 12, through Friday, January 13, 2012.  The award consists of a cash prize of $2,000.

Any graduate student or postdoctoral research associate currently at Brandeis is eligible to apply.  The application packet should consist of short/ curriculum vitae/ and a one page outline of the three lectures.  QB faculty will work with the successful applicant in preparing the lectures.  Applications should be submitted  to Jen Scappini either by campus mail (MS009), or e-mail (jscappin@brandeis.edu). (Due date will be discussed at the Wednesday, 10.19.11 Meeting).

An information session for potential applicants will be held on Wednesday, October 19th, 2:30-3:00 in Kosow 207.

Cryo-electron tomography and the structure of doublet microtubules

In a new paper in PNAS entitled “Cryo-electron tomography reveals conserved features of doublet microtubules“, Assistant Professor of Biology Daniela Nicastro and coworkers describe in striking new detail the structure and organization of the doublet microtubules (DMTs), the most conserved feature of eukaryotic cilia and flagella.

Cilia and flagella are thin, hair-like appendages on the surface of most animal and lower plant cells, which use these organelles to move, and to sense the environment. Defects in cilia and flagella are known to cause disease and developmental disorders, including polycystic kidney disease, respiratory disease, and neurological disorders. An essential feature of these organelles is the presence of nine outer DMTs (hollow protein tubes) that form the cylindrical core of the structure known as the axoneme. The doublet microtubule is formed by tubulin protofilaments and other structural proteins, which provide a scaffold for the attachment of dynein motors (that drive ciliary and flagellar motility) and regulatory components in a highly specific and ordered manner.

To address long-standing questions and controversies about the assembly, stability, and detailed structure of DMTs , the Nicastro lab used a high-resolution imaging technique, cryo-electron microscope tomography (cryo-ET), to probe the structure of DMTs from Chlamydomonas (single-celled algae) and sea urchin sperm flagella. Cryo-ET involves:

  1. rapid freezing of the sample to cryo-immobilize the molecules without forming ice crystals,
  2. tilting the specimen in the electron microscope to collect ~70 different views from +65° to –65°,
  3. computational alignment of the views to calculate a tomogram (a three-dimensional reconstruction of the imaged sample), and
  4. computational averaging of repeating structures in the tomogram to reduce noise and increase resolution.

Cryo-ET provided the necessary resolution to show that the B-tubules of DMTs are composed of 10 protofilaments, not 11, and that the inner and outer junctions between the A- and B-tubules are fundamentally different (see figure). The outer junction, crucial for the initial formation of the DMT, appears to be formed by interactions between the tubulin subunits of three protofilaments with unusual tubulin interfaces, but one of these protofilaments does not fit with the conventionally accepted orientation for tubulin protofilaments. This outer junction is important physiologically, as shown by mutations affecting the usual pattern of posttranslational modifications of tubulin. In contrast, the inner junction is not formed by direct interactions between tubulin protofilaments. Instead, a ladder-like structure that is clearly thinner than tubulin connects protofilaments of the A- and B-tubules.

The level of detail also allowed the Nicastro lab to show that the recently discovered microtubule inner proteins (MIPs) located within the A- and B-tubules are more complex than previously thought. MIPs 1 and 2 are both composed of alternating small and large subunits recurring every 16 and/or 48 nm along the inner A-tubule wall. MIP 3 forms small protein arches connecting the two B-tubule protofilaments closest to the inner junction, but does not form the inner junction itself. MIP 4 is associated with the inner surface of the A-tubule along the partition protofilaments, i.e., the five protofilaments of the A-tubule bounded by the two junctions with the B-tubule.

The Nicastro lab plans to build on this foundation in future work on the molecular assembly and stability of the doublet microtubule and axoneme, and hope to use it to elucidate molecular mechanisms of ciliary and flagellar motility and signal transduction in normal and disease states.

Other authors on the paper include Brandeis postdocs Xiaofeng Fu and Thomas Heuser, Brandeis undergrad Alan Tso (’10), and collaborators Mary Porter and Richard Linck from the University of Minnesota.

More postdocs than ever

and still not paid very well. The annual nationwide Survey of Earned Doctorates from a group of US government agencies shows that an increasing majority of Ph.D. recipients in the sciences go on to postdoctoral positions, as do the majority of Brandeis Ph.D. recipients in the life sciences, the only disciplines for which I  have statistics handy. The average salaries for postdocs are, as you might expect, less than luxurious when compared to other career paths taken by Ph.D. recipients.

Collective behaviors in active matter

Active matter is describes systems whose constituent elements consume energy and are thus out-of-equilibrium. Examples include flocks or herds of animals, collections of cells, and components of the cellular cytoskeleton. When these objects interact with each other, collective behavior can emerge that is unlike anything possible with an equilibrium system. The types of behaviors and the factors that control them however, remain incompletely understood. In a recent paper in Physical Review Letters, “Excitable patterns in active nematics“, Giomi and coworkers develop a continuum theoretical description motivated by recent experiments from the Dogic group at Brandeis in which microtubules (filamentous cytoskeletal molecules) and clusters of kinesin (a molecular motor) exhibit dramatic spatiotemporal fluctuations in density and alignment. Specifically, they consider a hydrodynamic description for density, flow, and nematic alignment. In contrast to previous theories of this type, the degree of nematic alignment is allowed to vary in space and time.  Remarkably, the theory predicts that the interplay between non-uniform nematic order, activity and flow results in spatially modulated relaxation oscillations, similar to those seen in excitable media and biological examples such as the cardiac cycle. At even higher activity the dynamics is chaotic and leads to large-scale swirling patterns which resemble those seen in recent experiments. An example of the flow pattern is shown below left, and the nematic order parameter, which describes the degree of alignment of the filaments, as shown for the same configuration below right. These predictions can be tested in future experiments on systems of microtubules and motor proteins.

The system behavior for an active nematic at high activity. (left) The velocity field (arrows) is superimposed on a plot of the concentration of active nematogens (green=large concentration, red=small concentration). (right) A plot of the nematic order parameter, S,  (blue=large S, brown=small S) is superimposed on a plot of the nematic director (arrows). The flow under high activity is characterized by large vortices that span lengths of the order of the system size and the director field is organized in grains.

 

Prolonging assembly through dissociation

Microtubules are semiflexible polymers that serve as structural components inside the eukaryotic cell and are involved in many cellular processes such as mitosis, cytokinesis, and vesicular transport. In order to perform these functions, microtubules continually rearrange through a process known as dynamic instability, in which they switch from a phase of slow elongation to rapid shortening (catastrophe), and from rapid shortening to growth (rescue). The basic self-assembly mechanism underlying this process, assembly mediated by nucleotide phosphate activity, is omnipresent in biological systems.  A recent paper, Prolonging assembly through dissociation: A self-assembly paradigm in microtubules ,  published in the May 3 issue of Physical Review E,  presents a new paradigm for such self-assembly in which increasing depolymerization rate can enhance assembly.  Such a scenario can occur only out of equilibrium. Brandeis Physics postdoc Sumedha, working with Chakraborty and Hagan, carried out theoretical analysis of a stochastic hydrolysis model to demonstrate the effect and predict features of growth fluctuations, which should be measurable in experiments that probe microtubule dynamics at the nanoscale.

Model for microtuble dynamics. All activity is assumed to occur at the right end of the microtubule (denoted as ">")

The essential features of the model that leads to the counterintuitive result of depolymerization helping assembly are (a) stochastic hydrolysis that allows GTP to transform into GDP  in any part of the microtubule, and (b) a much higher rate of GTP attachment if the end of the microtubule has a GTP-bound tubulin dimer, compared to a GDP-bound tubulin dimer.    Process (a) leads to islands of GTP-bound tubulins to be buried deep in the microtubule.   Depolymerization from the end reveals these islands and enhances assembly because of the biased attachment rate (b).  The simplicity of the model lent itself to analytical results for various aspects of the growth statistics in particular parameter regimes.   Simulations of the model supported these analytical results, and extended them to regimes where it was not possible to solve the model analytically.  The statistics of the growth fluctuations in this stochastic hydrolysis model are very different from “cap models” which do not have GTP remnants buried inside a growing microtubule.   Testing the predictions in experiments could, therefore, lead to a better understanding of the processes underlying dynamical instability in-vivo and in-vitro.   An interesting question to explore is whether the bias in the attachment rates is different under different conditions of microtubule growth.

Protected by Akismet
Blog with WordPress

Welcome Guest | Login (Brandeis Members Only)