Publications and Preprints


Groves Kuhnle C, Grimes M, Suarez Casanova VM, Turrigiano GG, and Van Hooser S (2022) Juvenile Shank3 knockout mice adopt distinct hunting strategies during prey capture learning. Biorxiv preprint doi:

Wu CH, Tatavarty V, Jean Beltran PM, Guerrero AA, Keshishian H, Drug K, MacMullan MA, Li L, Carr SA, Cottrell JR, and Turrigiano GG (2022). A bidirectional switch in the Shank3 phosphorylation state biases synapses toward up- or downscaling. Elife 11:e&4277 doi: 10.7554/elife.74277

Tereshko L, Turrigiano GG, and Sengupta P (2022) Primary cilia in the postnatal brain: subcellular compartments for organizing neuromodulatory signaling. Curr Opin Neurobiol. 74:102533

Ramos R, Wu CH, and Turrigiano GG (2022) Strong Aversive Conditioning Triggers a long-lasting generalized aversion. Front Cell Neurosci 16:854315


Wen W, Turrigiano GG (2021) Developmental regulation of homeostatic plasticity in mouse primary visual cortex. J Neurosci. 41:9891-9895

Cary BA, Turrigiano GG. Stability of neocortical synapses across sleep and wake states during the critical period in rats. eLife. doi: 10.7554/eLife.66304
Trojanowski NF, Turrigiano GG. CaMKIV signaling is not essential for the maintenance of intrinsic or synaptic properties in mouse visual cortex. eNeuro. 2021 May 12:ENEURO.0135-21.2021
Wu CH, Ramos R, Katz DB, and Turrigiano GG (2021) Homeostatic synaptic Scaling Establishes the Specificity of an Associative Memory. Current Biology 2021 Jun 7;31(11):2274-2285.e5
Tereshko L, Gao Y, Cary B, Turrigiano GG, and Sengupta P (2021) Ciliary neuropeptidergic signaling dynamically regulates excitatory synapses in postnatal neocortical pyramidal neurons. eLife 2021;10:e65427 doi: 10.7554/eLife.65427

Torrado Pacheco A, Bottorff J, and Turrigiano GG (2021) Sleep promotes downward firing rate homeostasis. Neuron, 109(3):530-544.e6. Preprint: BioRxiv doi:

Trojanowski NF, Bottorff J,  and Turrigiano GG (2021) Activity labeling in vivo using CaMPARI2 reveals electrophysiological differences between neuron with high and low firing rate set points. Neuron, 109(4):663-676.e5. Preprint, BioRxiv doi:


Tatavarty V,  Torrado Pacheco A, Groves Kuhnle C, Lin H, Koundinya P, Miska NK, Hengen KB, Wagner FF, Van Hooser SD, and Turrigiano GG (2020) Autism-associated Shank3 is essential for homeostatic compensation in rodent V1. Neuron, 106:769-777 doi: 10.1016/j.neuron.2020.02.033

Wu YK Hengen KB, Turrigiano GG, and Gjorgjieva J (2020) Homeostatic mechanisms regulate distinct aspects of cortical circuit dynamics. PNAS


Torrado Pacheco A, Tilden EI, Grutzner SM, Lane BJ, Wu Y, Hengen KB, Gjorgjieva J, and Turrigiano, GG (2019) Rapid and Active Stabilization of Visual Cortical Firing Rates Across Light-Dark Transitions.  PNAS

Ma Z, Turrigiano GG, Wessel R, Hengen KB (2019) Critical Dynamics are a homeostatic set point of cortical networks in vivo. Neuron, 104(4):655-664.e4

Cary BA and Turrigiano GG (2020) Stability of cortical synapses across sleep and wake. Preprint, BioRxiv doi:


Miska N, Richter L, Cary B, Gjorgjieva J, and Turrigiano GG (2018) Sensory Deprivation Independently Regulates Neocortical Feedforward and Feedback Excitation-Inhibition Ratio. eLife,

Moeyeart G, Holt G, Madangopal R, Perez-Alverez A, Fearey BC, Trojanowski NF, Ledderose J, Zolnik TA, Das A, Patel D, Brown TA, Sachdev RNS, Eichkolt BJ, Larkum ME, Turrigiano GG, Dana H, Gee CE, Oertner TG, Hope BT, and Schreiter ER (2018) Improved methods for marking active neuron populations. Nature Comm 9:4440


Joseph, A, Turrigiano GG (2017) All for One but Not One for All: Excitatory Synaptic Scaling and Intrinsic plasticity are co-regulated by CaMKIV. J Neurosci. 37:6778-6785 Joseph et al 2017

Nahmani M, Lanahan C, DeRosier D, Turrigiano GG. (2017) High-numerical-aperture cryogenic light microscopy for inceased precision of superresolution reconstructions. PNAS pii: 201618206. doi: 10.1073/pnas.1618206114 Nahmani etal 2017

Turrigiano, GG (2017) The dialectic of Hebb and homeostasis. Philos Trans R Soc Lond B Biol Sci. 2017 Mar 5;372(1715). pii: 20160258. doi: 10.1098/rstb.2016.0258. Review. Turrigiano 2016


Hengen KB, Torredo Pacheco A, McGregor J, Van Hooser S, and Turrigiano GG (2016) Neuronal firing rate homeostasis is inhibited by sleep and promoted by active wake. Cell, 165:180-91. doi: 10.1016/j.cell.2016.01.046 Hengen et al 2016.compressed

Steinmetz CC, Tatavarty V, Sugino K, Shima Y, Joseph A, Lin H, Rutlin M, Lambo M, Hempel CM, Okaty BW, Paradis S, Nelson SB, Turrigiano GG. (2016) Upregulation of u3A drives homeostatic plasticity by rerouting AMPAR into the recycling endosomal pathway. Cell Rep. 2016 Sep 6;16(10):2711-22. doi: 10.1016/j.celrep.2016.08.009. Steinmetzetal2016.compressed


Gainey M, Tatavarty V, Nahmani M., Lin H., and Turrigiano GG (2015) Activity-dependent Synaptic GRIP1 Accumulation Drives Synaptic Scaling Up in Response to Action Potential Blockade. PNAS 112:E3590-9 Gainy and Tatavarty et al 2015.compressed

Nahmani M, Turrigiano GG (2014) Deprivation-induced strengthening of presynaptic and postsynaptic inhibitory transmission in Layer 4 of visual cortex during the critical period. J Neurosci. 34:2671-82 Nahmani and Turrigiano 2014.compressed

Nahmani M, Turrigiano GG (2014) Adult cortical plasticity following injury: recapitulation of critical period mechanisms? Neuroscience pii: S0306-4522(14)00331-5. doi: 10.1016/j.neuroscience.2014.04.029 Nahmani and Turrigiano Review 2014

Turrigiano, G.G. (2014) Keeping a Lid on it. Nature. 2014 Jul 17;511(7509):297-8.

Taft CE and Turrigiano GG (2014) PSD-95 promotes the stabilization of young synaptic contacts. Philo. Trans Royal Soc. Lond. B. Biol. Sci. 369: 20130134 Taft et al. 2013


Lambo ME and Turrigiano, GG (2013) Synaptic and Intrinsic Homeostatic Mechanisms Cooperate to Increase L2/3 Pyramidal Neuron Excitability During a Late Phase of Critical Period Plasticity.  J Neurosci, 33:8810-8819 Lambo and Turrigiano, 2013

Tatavarty V, Sun Q, and Turrigiano, G.G. (2013) How to Scale Down Postsynaptic Strength. J Neurosci. 33:13179-89. Tatavarty et al. 2013

Hengen KB, Lambo ME, Van Hooser S, Katz DB, and Turrigiano, G.G. (2013) Firing Rate Homeostasis in Visual Cortex of Freely Behaving Rodents. Neuron 80:335-42 Hengen et al 2013

Loebrich S, Djukic B, Tong ZJ, Cottrell JR, Turrigiano GG, and Nedivi E (2013) Regulation of glutamate receptor internalization by the spine cytoskeleton is mediated by its PKA-dependent association with CPG2. PNAS 110(47):E4548-56. Loebrich2013

Lefort S, Gray AC, Turrigiano GG (2013) Long-term inhibitory plasticity in visual cortical layer 4 switches sign at the opening of the critical period. PNAS, 110(47):E4540-7. Lefort et al 2013


Turrigiano, G (2012) Homeostatic Synaptic Plasticity: Global and Local Mechanisms for Stabilizing Neuronal Function. Cold Spring Harb Perspect Biol. 1;4(1):a005736 TurrigianoCSHPB2011

Blackman MP, Nelson SB, and Turrigiano GG (2012) A Critical and Cell-Autonomous Role for MeCP2 in Synaptic Scaling Up. J Neurosci, 32(39):13529-36 Blackman et al 2012

Alivisatos AP, Andrews AM, Boyden ES, Chun M, Church GM, Deisseroth K, Donoghue JP, Fraser SE, Lippincott-Schwartz J, Looger LL, Masmanidis S, McEuen PL, Nurmikko AV, Park H, Peterka DS, Reid C, Roukes ML, Scherer A, Schnitzer M, Sejnowski TJ, Shepard KL, Tsao D, Turrigiano G, Weiss PS, Xu C, Yuste R, Zhuang X. Nanotools for neuroscience  and brain activity mapping (2012). ACS Nano 7:1850-1866


Sun, Q, and Turrigiano, GG (2011) PSD-95 and PSD-93 play critical but distinct roles in synaptic scaling up and down. J. Neurosci. 31:6800-6808 SunPSD952011compressed

Turrigiano, G (2011) Too many cooks? Intrinsic and synaptic homeostatic mechanisms in cortical circuit refinement. Ann. Rev. Neurosci. 34:89-103 Turrigiano AnnRevNeuro2011

Nataraj K. and Turrigiano, G (2011) Regional and Temporal Specificity of Intrinsic Plasticity Mechanisms in Rodent Primary Visual Cortex. J Neurosci, 31:17932-40 Nataraj2011compressed


Maffei, A., Lambo, M., and Turrigiano, G.G (2010) Critical period for inhibitory plasticity in binocular visual cortex. J Neurosci, 30:33304-3309 Maffei et al 2010

Nataraj, K., Le Roux, N., LeFort, S., Nahmani, M., and Turrigiano, G.G, (2010) Visual deprivation selectively suppresses L5 pyramidal neuron excitability by preventing the induction of intrinsic plasticity. Neuron, 68:750-762 Nataraj et al 2010

Steinmetz, C., and Turrigiano, GG (2010) TNFα Signaling maintains the ability of cortical synapses to express synaptic scaling. J. Neurosci, 30:15685-14690 Steinmetz and Turrigiano 2010

Luo L, Rodriguez E, Jerbi K, Lachaux JP, Martinerie J, Corbetta M, Shulman GL, Piomelli D, Turrigiano GG, Nelson SB, Joëls M, de Kloet ER, Holsboer F, Amodio DM, Frith CD, Block ML, Zecca L, Hong JS, Dantzer R, Kelley KW, Craig AD (2010). Ten years of nature reviews neuroscience: insights from the highly cited. Nat. Rev. Neurosci. 11:718-726


Bracken, B. and Turrigiano, G (2009) Experience-dependent regulation of TrkB isoforms in rodent visual cortex. Dev. Neurobiol. 69:267-278 Bracken and Turrigiano 09

Gainey M., Hurvitz-Wolff J., Lambo, M., and Turrigiano G.G. (2009) Synaptic scaling in neocortical neurons requires the GluR2 subunit of the AMPA receptor. J Neurosci., 29:6479-6489 Gainey et al 2009

Ehlers, M and Turrigiano, G. (2009) Signaling Mechanisms. Curr. Opin. Neurobiol. 19:253-256


Pratt, K., Taft, CE, Burbea, M., and Turrigiano, GG (2008) Dynamics underlying synaptic gain between pairs of cortical pyramidal neurons. Dev. Neurobiol. 68(2):143-51 Pratt et al 08

Ibata, K., Sun, Q., and Turrigiano, G.G. (2008) Rapid synaptic scaling induced by changes in   postsynaptic firing. Neuron, 57:819-826. Ibata et al 08

Maffei, A., and Turrigiano, G.G. (2008) Multiple modes of network homeostasis in visual cortical layer 2/3. J. Neurosci., 28:4377-4384. Maffei and Turrigiano 08

Maffei, A. and Turrigiano, G (2008) The Age of Plasticity: Developmental Regulation of Synaptic Plasticity in Neocortical Microcircuits.  Prog Brain Res 169:211-23 maffei and Turrigiano 2008b

Turrigiano, G (2008) The self-tuning neuron: synaptic scaling of excitatory synapses. Cell, 135:422-435 Turrigiano STN 2008

Nelson, SB and Turrigiano, GG (2008) Strength through diversity. Neuron 60:477-482 Turrigiano and Nelson 2008


Sjöström, P.J., Turrigiano, G.G. and Nelson, S.B. (2007) Multiple forms of long-term plasticity at unitary neocortical layer 5 synapses. J. Neuropharm. 52(1):176-84 Sjostrom et al 2007

Giorgi, C., Yeo, GW., Stone, ME, Katz, DB, Burge, C., Turrigiano, G.G., and Moore, MJ (2007) The EJC factor eIF4AIII modulates synaptic strength and neuronal protein expression. Cell 130:179-191 Giorgi et al 2007

Maffei, A., Nataraj, K., Nelson, S.B., and Turrigiano, G.G. (2006) Visual deprivation potentiates cortical inhibition. Nature, 443:81-84 Maffei et al 2006

Turrigiano, Gina G (2007) Homeostatic signaling: the positive side of negative feedback. Curr. Opin. Neurobiol. 17:318-324 Turrigiano 2007

Turrigiano, G.G. (2006) Maintaining your youthful spontaneity: microcircuit homeostasis in the embryonic spinal cord. Neuron 49:481-485

Turrigiano, G.G. (2006) More than a sidekick: glia and homeostatic synaptic plasticity.  Trends Mol. Medicine 12:458-60

Wierenga, C., Walsh, M., and Turrigiano, G.G. (2006) Temporal regulation of the expression locus of homeostatic plasticity. J. Neurophysiol., 96:2127-2133 wierenga et al 2006


Watt, A., Sjostrom, P.J., Hausser, M., Nelson, S.B., and Turrigiano, G.G. (2004) A Proportional but slower NMDA potentiation follows AMPA potentiation in LTP. Nature Neurosci., 7:518-524 Watt2004pdf

Cudmore, R.H. and Turrigiano, G.G. (2004) Long-term increase in intrinsic excitability following a short period of action potential firing in LV visual cortical neurons. J Neurophysiol., 92:341-348 Cudmore and Turrigiano 2004

Turrigiano, G.G., Nelson, S.B. (2004) Homeostatic Plasticity in Developing Cortical Networks. Nature Reviews Neurosci. 5:97-10 Turrigiano and Nelson 2004

Maffei, A, Nelson, S.B., and Turrigiano, G.G. (2004) Selective reconfiguration of layer 4 visual cortical circuitry by visual deprivation. Nature Neurosci. 12:1353-1359 Maffei et al 2004

Turrigiano, G.G. (2004) A competitive game of synaptic tag. Neuron 44:917-923

Sjöström, P.J., Turrigiano, G.G. and Nelson, S.B. (2004) Endocannabinoid-dependent neocortical layer-5 LTD in the absence of postsynaptic spiking. J. Neurophysiol. 92:3338-3343 Sjostrom et al 2004

Wierenga, C, Ibata, K, and Turrigiano, G.G. (2005) Postsynaptic expression of Homeostatic synaptic plasticity at neocortical synapses. J. Neurosci. 25:2895-2905 Wierenga et al 2005

Dani, V., Chanage, Q., Maffei, A., Turrigiano, G., Jaenisch, R., and Nelson, S (2005) Reduced cortical activity due to a shift in the balance between excitation and inhibition in a mouse model of Rett syndrome. PNAS 102: 12560-12565 Dani et al. 2005


Desai NS, Cudmore, R.H, Nelson SB, and Turrigiano GG (2002) Critical Periods for Experience-dependent synaptic scaling in visual cortex. Nature Neurosci. 5: 783-789 Desai et al 2002

Kilman, V, van Rossum, M.C., and Turrigiano, G.G. (2002) Activity Scales Inhibitory Synaptic strengths by Regulating the Number of Postsynaptic GABAa Receptors. J. Neurosci, 22:1328-1337 Kilman et al 2002

Turrigiano, G.G. (2002) A recipe for ridding synapses of the ubiquitous AMPA receptor. TINS

Van Rossum, M.C., Turrigiano, G.G., and Nelson, S.B. (2002) Fast propagation of firing rates through layered networks of noisy neurons. J. Neurosci., 22:1956-1966

Myme, C.O., Sugino, K., Turrigiano, G.G., and Nelson, S.B. (2003) The NMDA to AMPA ratio at synapses onto layer 2/3 pyramidal neurons is conserved across prefrontal and visual cortices. J. Neurophysiol., 90:771-779

Pratt KG, Watt AJ, Griffith LC, Nelson SB, and Turrigiano GG (2003) Activity-Dependent Remodeling of Presynaptic Inputs by Postsynaptic Expression of Activated CaMKII. Neuron 39:269-281 Pratt et al 2003

Sjöström, P.J., Turrigiano, G.G. and Nelson, S.B. (2003) Neocortical LTD via Coincident activation of presynaptic NMDA and cannabinoid receptors. Neuron 39:641-654 Sjostrom et al 2003


Hemple, C., Hartman, K., Turrigiano, G.G., and Nelson, S.B. (2000) Multiple Forms of Short-term Synaptic Plasticity in Prefronal Cortex. J. Neurophysiol., 83:3031-3041.

Turrigiano, G.G. (2000) AMPA receptors unbound: membrane cycling and synaptic plasticity. Neuron 26:5-8

Turrigiano, G.G. and Nelson, S.B. (2000) Hebb and Homeostasis in Neuronal Plasticity. Current Opinion in Neurobiology, 10:358-364. Hebb and Homeostasis 2000

Watt, A., van Rossum, M., MacLeod, K., Nelson, S.B., and Turrigiano, G.G. (2000) Activity Co-regulates Quantal AMPA and NMDA Currents at Neocortical Synapses. Neuron, 26:659-670 watt2000

Van Rossum, M.C., Bi, G.Q., and Turrigiano, G.G. (2000) Stable Hebbian Learning from Spike-Timing Dependent Plasticity. J. Neurosci. 20:8812-8821

Leslie, K.R, Nelson, S.B., and Turrigiano, G.G. (2001) Postsynaptic Depolarization Scales Quantal Amplitude in Neocortical Pyramidal Neurons. J. Neurosci. 21: RC170

Sjöström, P.J., Turrigiano, G.G. and Nelson, S.B. (2001) Rate, timing, and cooperativity jointly determine cortical synaptic plasticity. Neuron, 32:1149-1164


Turrigiano, G.G., Leslie, K.R, Desai, N.S, Rutherford, L.C., and Nelson, S.B. (1998) Activity-dependent scaling of quantal amplitude in neocortical neurons. Nature 391:892-895

Turrigiano, G.G. and Nelson, S.B. (1998) Thinking globally, acting locally: AMPA receptor turnover and synaptic strength. Neuron, 21:933-941

Rutherford L.C., Nelson S.B., and Turrigiano, G.G. (1998) Opposite effects of BDNF on the quantal amplitude of pyramidal and interneuron excitatory synapses. Neuron 21:521-530

Desai, N.S., Rutherford, L.C., and Turrigiano, G.G. (1999). Plasticity in the intrinsic excitability of neocortical pyramidal neurons.  Nature Neuroscience 2:515-520

Desai, N.S., Wang, X.-J., and Turrigiano, G.G. (1999) Activity-dependent changes in the balance of inward and outward currents can account for changes in pyramidal neuron excitability. Nature Neuroscience Web supplement

Varela, J.A., Song, S., Turrigiano, G.G., and Nelson, S.B. (1999) Differential depression at excitatory and inhibitory synapses in visual cortex. J. Neurosci. 19:4293-4304

Desai, N.S. Rutherford L.C., Nelson, S.B. and Turrigiano, G.G. (1999) Activity-dependent regulation of intrinsic conductances in cortical pyramidal neurons. Neurocomputing, 27:101-106

Desai, N.S., Rutherford, L.C., and Turrigiano, G.G. (1999) BDNF regulates the intrinsic excitability of cortical neurons. Learning and Memory 6:284-291


Lockhart, S., Turrigiano, G.G., and Birren S.J. (1997) Nerve Growth Factor modulates synaptic connections between sympathetic neurons and cardiac myocytes. J. Neurosci. 17:9573-9582

Rutherford, L.C., DeWan, A., Lauer, H., and Turrigiano, G.G. (1997) BDNF mediates the activity-dependent regulation of inhibition in neocortical cultures. J. Neurosci. 17:4527-4535

Some interesting earlier Turrigiano pubs:

Turrigiano, G.G and A.I. Selverston (1990) A cholecystokinin-like hormone activates a feeding-related neural circuit in lobster. Nature 344:866-868 Turrigiano1990

Turrigiano, G.G., L.F. Abbott, and E. Marder (1994) Activity-dependent changes in the intrinsic properties of cultured neurons. Science 264:974-976 Turrigiano Science 1994

Turrigiano, G.G., G. Le Masson, and E. Marder (1995) Selective regulation of current densities underlies spontaneous changes in the activity of cultured neurons. J. Neurosci. 15:3640-6552

Turrigiano, G.G., E. Marder, and L.F. Abbott (1996) Cellular short term memory from a slow potassium conductance. J. Neurophys. 75:963-966