Cryo-electron tomography and the structure of doublet microtubules

In a new paper in PNAS entitled “Cryo-electron tomography reveals conserved features of doublet microtubules“, Assistant Professor of Biology Daniela Nicastro and coworkers describe in striking new detail the structure and organization of the doublet microtubules (DMTs), the most conserved feature of eukaryotic cilia and flagella.

Cilia and flagella are thin, hair-like appendages on the surface of most animal and lower plant cells, which use these organelles to move, and to sense the environment. Defects in cilia and flagella are known to cause disease and developmental disorders, including polycystic kidney disease, respiratory disease, and neurological disorders. An essential feature of these organelles is the presence of nine outer DMTs (hollow protein tubes) that form the cylindrical core of the structure known as the axoneme. The doublet microtubule is formed by tubulin protofilaments and other structural proteins, which provide a scaffold for the attachment of dynein motors (that drive ciliary and flagellar motility) and regulatory components in a highly specific and ordered manner.

To address long-standing questions and controversies about the assembly, stability, and detailed structure of DMTs , the Nicastro lab used a high-resolution imaging technique, cryo-electron microscope tomography (cryo-ET), to probe the structure of DMTs from Chlamydomonas (single-celled algae) and sea urchin sperm flagella. Cryo-ET involves:

  1. rapid freezing of the sample to cryo-immobilize the molecules without forming ice crystals,
  2. tilting the specimen in the electron microscope to collect ~70 different views from +65° to –65°,
  3. computational alignment of the views to calculate a tomogram (a three-dimensional reconstruction of the imaged sample), and
  4. computational averaging of repeating structures in the tomogram to reduce noise and increase resolution.

Cryo-ET provided the necessary resolution to show that the B-tubules of DMTs are composed of 10 protofilaments, not 11, and that the inner and outer junctions between the A- and B-tubules are fundamentally different (see figure). The outer junction, crucial for the initial formation of the DMT, appears to be formed by interactions between the tubulin subunits of three protofilaments with unusual tubulin interfaces, but one of these protofilaments does not fit with the conventionally accepted orientation for tubulin protofilaments. This outer junction is important physiologically, as shown by mutations affecting the usual pattern of posttranslational modifications of tubulin. In contrast, the inner junction is not formed by direct interactions between tubulin protofilaments. Instead, a ladder-like structure that is clearly thinner than tubulin connects protofilaments of the A- and B-tubules.

The level of detail also allowed the Nicastro lab to show that the recently discovered microtubule inner proteins (MIPs) located within the A- and B-tubules are more complex than previously thought. MIPs 1 and 2 are both composed of alternating small and large subunits recurring every 16 and/or 48 nm along the inner A-tubule wall. MIP 3 forms small protein arches connecting the two B-tubule protofilaments closest to the inner junction, but does not form the inner junction itself. MIP 4 is associated with the inner surface of the A-tubule along the partition protofilaments, i.e., the five protofilaments of the A-tubule bounded by the two junctions with the B-tubule.

The Nicastro lab plans to build on this foundation in future work on the molecular assembly and stability of the doublet microtubule and axoneme, and hope to use it to elucidate molecular mechanisms of ciliary and flagellar motility and signal transduction in normal and disease states.

Other authors on the paper include Brandeis postdocs Xiaofeng Fu and Thomas Heuser, Brandeis undergrad Alan Tso (’10), and collaborators Mary Porter and Richard Linck from the University of Minnesota.

Physics students present research at 20th Annual Berko Symposium on May 16

On Monday, May 16, the Physics Department will hold the Twentieth Annual Student Research Symposium in Memory of Professor Stephan Berko in Abelson 131. The symposium will end with talks by the two Berko Prize winning students, undergraduate Netta Engelhardt and graduate student Tim Sanchez. The whole department then gathers for a lunch of cold cuts, cookies and conversation. “It’s a great way to close out the academic year,” said Professor of Astrophysics and Department Chair John Wardle. “We come together to celebrate our students’ research and hear what the different research groups are doing.”

The undergraduate speakers will describe their senior thesis honors research. This is the final step in gaining an honors degree in physics, and most of them will also be co-authors on a paper published in a mainline science journal. The graduate student speakers are in the middle of their PhD research, and will disucss their progress and their goals.

The prize winners are nominated and chosen by the faculty for making particularly noteworthy progress in their research. Graduate student winner Sanchez’ talk is titled “Reconstructing cilia beating from the ground up.” He works in Professor Zvonimir Dogic’s lab studying soft condensed matter. Undergraduate winner Engelhardt’s talk is titled “A New Approach to Solving the Hermitian Yang-Mills Equations”. She works with Professors Matt Headrick and Bong Lian (Math) on problems in theoretical physics and string theory. The schedule for Monday morning and abstracts of all the talks can be found on the Physics Department website.

Sanchez’ research very much represents the growing interdisciplinary nature of science at Brandeis. Here, a physicist’s approach is used to study a biological organism. Professor Zvonimir Dogic says of his work “He has made a whole series of important discoveries that are going to have a measurable impact on a number of diverse fields ranging from cell biology, biophysics, soft matter physics and non-equilibrium statistical mechanics.  His discoveries have fundamentally transformed the direction of my laboratory and probably of many other laboratories as well.”

Engelhardt’s research is much more abstract and mathematical, and concerns fundamental problems in string theory, not usually an area tackled by undergraduates. Professor Headrick says “Netta really, really wants to be a theoretical physicist, preferably a string theorist. She has a passion for mathematics, physics, and the connections between them.” He adds that she is utterly fearless in tackling hard problems. Netta has been awarded an NSF Graduate Research Fellowship based on her undergraduate work here.  Next year she will enter graduate school at UC Santa Barbara and will likely work with eminent string theorist Gary Horowitz, who has already supervised the PhD research of two other Brandeis physics alumni, Matthew Roberts ’05, and Benson Way ’08.

This Student Research Symposium is now in its 20th year. The “First Annual…..” (two words which are always unwise to put next to each other) was initiated in 1992 by Wardle to honor Professor Stephan Berko, who had died suddenly the previous year. Family, friends and colleagues contributed to a fund to support and celebrate student research in his memory. This provides the prize money which Netta and Tim will share.

Stephan Berko was a brilliant and volatile experimental physicist who was one of the founding members of the physics department. He was born in Romania in 1924 and was a survivor of both the Auschwitz and Dachau concentration camps. He came to the United States under a Hillel Foundation scholarship and obtained his PhD at the University of Virginia. He came to Brandeis in 1961 to establish a program in experimental physics and worked tirelessly to build up the department. Together with Professors Karl Canter (dec. 2006) and Alan Mills (now at UC Riverside) he established Brandeis as a world center for research into positrons (the anti-matter mirror image of ordinary electrons). In a series of brilliant experiments they achieved many “firsts,” culminating in election to the National Academy of Sciences for Steve, and, it has been rumored, in a Nobel Prize nomination for the three of them. Steve was as passionate about teaching as he was about research, and when he died, it seemed most appropriate to honor his memory by celebrating the research of our graduate and undergraduate students. During the coffee break on Monday, we will show a movie of Steve lecturing on “cold fusion,” a headline-grabbing but phony claim for producing cheap energy from 1989.

Protected by Akismet
Blog with WordPress

Welcome Guest | Login (Brandeis Members Only)